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Insight into chemical reactions in catalysis 

The chemical reaction lies at the very heart of chemistry. In spite of its paramount 

importance, an understanding of chemical reactions still falls short of the chemists’ 

expectation. Microscopically, chemical reactions are constituted by atomic movements on a 

typical time scale of several hundreds of picosecond (10-12 s). It has been a formidable task 

for chemists to track down a reaction process in experiment, as both the high spatial and 

temporal resolutions are required. On the other hand, there are no such problems in the 

‘virtual laboratory’. With highly accurate ab initio methods such as density functional theory, 

chemical reactions can be studied in detail on powerful computers.  

 

My thesis focused on the basic principles that govern reactions, in particular catalytic 

process. By developing and applying ab initio quantum mechanical calculations with the aid 

of massively parallel supercomputers, my research geared towards elucidating reaction 

mechanisms, predicting the fundamental properties of chemical reactions and designing 

new catalysts and materials. The catalytic reactions that I was most concerned with were 

those of relevance to heterogeneous catalysis. It is a field of tremendous economic 

incentives, which represents 20~30% of global GNP annually. Furthermore, the big 

challenges that human beings are facing, such as finding the new energy sources and 

dealing with the environmental problems, are all intimately associated with heterogeneous 

catalysis. Below I highlight two contributions of my Ph.D work in this field.  

 

New framework for predicting reaction barriers on metal surfaces 

 

Predicting energy barriers of chemical reactions is a fundamental goal in chemistry. It 
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has long believed that the design of new catalysts will be much facilitated if the barrier can 

be simply estimated. Traditional tools in chemistry such as Marcus Theory and its more 

qualitative pre-version, Bronsted-Evans-Polanyi Principle, often do not work well in 

explaining the reactivity in heterogeneous catalysis, because the bonding between the 

molecule and the surface is complex and the reaction involving surface atoms is extremely 

difficult to study. Therefore, an understanding of the barrier to surface reactions remains 

one of the greatest challenges to chemists.  

 

With the aim to build a framework to understand catalytic reactions on surfaces, we 

systematically studied many elementary dissociation and association reactions on transition 

metals. By comparing the same dissociation reaction on different metal surfaces, we found 

that the barrier of a dissociation reaction is linearly dependent on its final state 

chemisorption energy. The linear relationship has a slope being close to -1 (Fig. 1). In order 

to explain this result, we derived the following equation: FSbond
ass
a

dis
a EEEE −+= ; where 

dis
aE is the dissociation barrier, ass

aE is the barrier of the reverse reaction (association), 

bondE is the bond strength of the breaking bond, which is constant for a reaction, and FSE  is 

the total chemisorption energy of dissociation products. The equation is exact. It was 

discovered that the change of ass
aE is much smaller (one order of magnitude) than that 

of FSE with the variation of the metal substrate. Therefore, dis
aE is mainly determined by FSE . 

This energetic feature is in accord with our observation that the transition states of 

dissociation reactions on metal surfaces are very late (like the final states). The result has 

been used to explain many experimental observations. 

  

 

 

 

 

 

 

 

 

 

                                    

                                       

                 Fig. 1  Linear dependency of dissociation barrier on final state stability 

 

Through further studies on association reactions, we found that they can be divided into 

two classes according to their transition state structures. In the reactions of class I, the two 
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reactants bond with the same surface atom to achieve the transition state. In such a 

structure, there is a bonding competition between the two reactants, which adds an extra 

energy cost to the barrier. In contrast, this bonding competition effect is absent in the class 

II reactions because the reactants in the transition state do not bond with the same metal 

atom directly. We also obtained some simple rules for estimating the barriers for these 

reactions. In addition to their differences in energetics, these two classes of reactions have 

distinct preference in their reaction sites. Class I reactions prefer to occur on surface 

defects such as steps, but such preference is not present in class II. These results provide 

important insights into a fundamental question in catalysis, namely where do reactions 

occur on surfaces? We believe that the knowledge gleaned from these fundamental studies 

will facilitate the optimization of existing catalyst and the design of new ones in the future. 

 

Synergetic effect: why are noble metals not noble? 

 

 

It is known that the real catalysts used in industry contain multi-components and most 

commonly, they consist of metals dispersed on metal oxides. The multi-component catalyst 

can often dramatically boost the catalytic performance. Therefore, to gain insight into the 

synergetic effect between metals and metal oxides is a natural step to extend our work on 

metals. In recent years gold-based catalysts are found to exhibit unusually high catalytic 

ability for many reactions. For example, CO oxidation on TiO2-supported Au is observed at 

a temperature as low as 200 K. This is very surprising considering that neither gold (the 

most inert metal) nor the oxides are good catalysts for the reaction. Because of this, gold-

based catalysts are often quoted as a textbook example for the synergetic effect. Using 

density functional theory calculations, we systematically studied CO oxidation on many 

different unsupported Au surfaces as well as a Au/TiO2 system. Through exhaustive 

searching for the pathways of O2 dissociation on a series of Au surfaces, including small Au 

particles, we demonstrated that O2 dissociation on unsupported Au possesses a high 

barrier and is thus difficult at low temperatures. This rules out the possibility of a long-

speculated mechanism involving O2 dissociation. 

 

 

 

 

 

 

 

 
Fig. 2 CO oxidation on Au/oxide 
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By further including TiO2 into the Au system, we discovered the physical origin of the 

synergetic effect. It was found that O2 can adsorb much stronger at the Au/TiO2 interface 

than that on pure Au, causing an increase in the concentration of O2 on the catalyst. More 

importantly, our calculations showed that the oxide can induce a significant electron transfer 

from the Au to the 2π anti-bonding states of O2 that sit at the interface between the metal 

and the oxide, which causes the O2 to be highly negatively charged. Such electron transfer 

not only enhances the binding of O2 on the catalyst but also activates the O2. This results in 

a facile bi-molecular pathway (CO+O2? CO2+O) leading to CO2 formation (Fig. 2). The 

synergetic effect identified is believed to be general in heterogeneous catalysis.  
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