

INFORMATION ESSENTIAL FOR CHARACTERIZING A FLOW-BASED ANALYTICAL SYSTEM

Poster presented at the IUPAC Congress/General Assembly July 2001

INTRODUCTION

Classification and definition of flow-based analytical methods

Existing terminology — incomplete / ambiguous

Analytical procedures and related instrumentation
 Often partially described

- IUPAC recommendations
[Pure Appl. Chem. 66 (1994) 2493]

Complementation required

OBJECTIVES

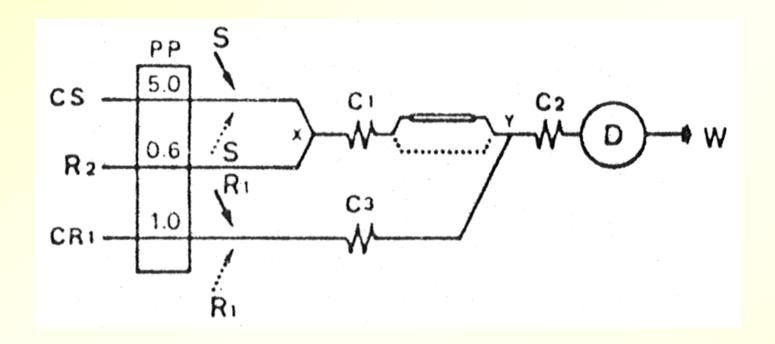
 Guidelines for characterizing a flow analyzer and related methods

- Minimal requirements for scientific or technical reports

 Checklist to strengthen the tendency toward normalization

CONTENTS

- Elements to be considered for proper description of the flow system
- Description of the components of the system establishment of the flowing streams sample introduction (possibility of reagent introduction) manifold sample processing detection
- Performance (figures of merit)
 sampling rate, accuracy, sensitivity, detection limit,
 selectivity, dynamic range, precision, robustness,
 portability
- Recommendations concerning essential, redundant information
- Meaning of absence of information


PRACTICAL EXAMPLE

Here, the project is exemplified by taking into account a classical article* prepared by the group led by H. Bergamin F°, which originally exploited the concept of commutation and the use of immobilized reagents in flow-injection analysis. Nitrate and nitrite were sequentially determined.

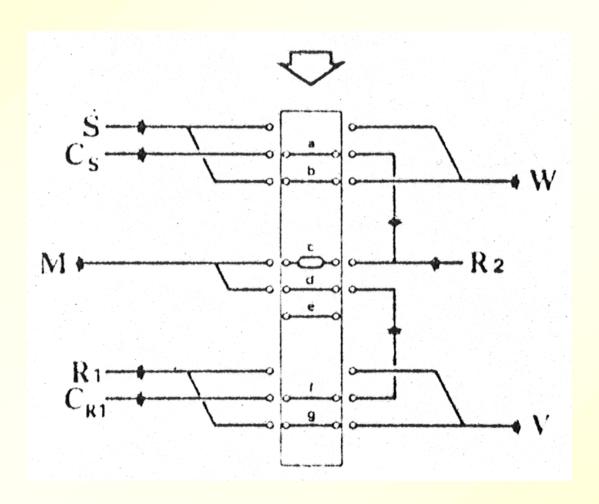
* Anal. Chim. Acta 114 (1980) 191

citations: ~150 [ISI - 2001]

FLOW DIAGRAM - original system

 C_s (water) and C_{R1} (phosphoric acid) = carrier streams for the sample (S) and color-forming reagent (R_1)

 R_2 = masking/buffering reagent


PP = peristaltic pump with flow rates in ml min⁻¹

 C_1 , C_2 , C_3 = 15, 150, 15-cm coils

D = detector; W = waste

Column placed between C₁ and C₂

DIAGRAM OF THE INJECTOR - COMMUTATOR

a, b = sampling loops; c = reducing column; d, e = connectors; f, g = reagent loops; M = manifold

INFORMATION

Original

Recommended

PUMP

as in earlier work

nihil

REACTOR

as in earlier work diameter

specify winding

VALVE

injector commutator

specify building-up or

mention manufacturer

FLOW DIAGRAM

two illustrations

one figure

DETECTOR

wavelength, optical path,

add illuminated volume

inner volume

FIGURES OF MERIT

accuracy, precision, sampling

add dispersion coefficient

rate, drift, % NO₃ reduction

residence times

(total - inside column)

GENERAL

nihil

mention available

commercial devices

FIA (BIA, SIA, TAS,...)

flow analysis

CONCLUSIONS

- Tendency to normalization
- Easier implementation of a given method to other analyzer
- Reduction of redundant information
- Enhanced suitability for less skilled analysts

Task group

Elias Ayres G. Zagatto¹, Jacobus F. van Staden², Nelson Maniasso¹, Raluca I. Stefan², Graham D. Marshall³

- 1. University of São Paulo (Brazil)
- 2. University of Pretoria (South Africa)
- 3. GlobalFIA Inc. (United States)

ACKNOWLEDGMENTS

Those who have motivated this project since its inception; V. Grassi for assistance in preparing this poster.