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Forecasting the future of a scientific field is by nature more of a subjective exercise than of a scientific task. 
How the boundaries between the various scientific fields became established was not of designed purpose. 
How they could be displaced or erased is likewise unlikely to be the fruit of a rational plan. As it stands now, 
physical organic chemistry is obviously related to many other fields of chemistry. It is thus tempting to 
dynamite the barriers separating these fields for the sake of a more rapid and reliable progress of knowledge. 
Progressively one may thus rediscover the unity of chemistry and ultimately the unity of the physical sci- 
ences. It seems more realistic to prefer evolution to revolution, to start with what we have and try to encour- 
age what seems promising among the ongoing trends. 

Why organic? Why physical? The heart of physical organic chemistry is and should remain, in my opinion, 
the understanding of chemical reactivity. Because their structure can be finely tuned, organic molecules have 
provided and continue to provide a privileged manifold for investigating the relationships between molecular 
structure and reactivity. Many of the techniques and concepts thus employed may be extended to transition 
metal chemistry and to the chemistry of small inorganic molecules, albeit not always in a straightforward 
manner. Organometallic systems thus appear as a natural bridge between these various areas. Therefore, 
what is potentially most important in “organic” is the implicit reference to molecular aspects rather than a 
strict reference to organic compounds. This extends to supramolecular assemblies since they are built from 
molecules, even if it is true that the comprehension of their cooperative properties is an important part of the 
story. 

“Physical” sounds as a fierce declaration of rationality (the discourse of chemistry should not be con- 
founded with the discourse of a cookbook). Simultaneously, it carries with it the long-standing complex of 
inferiority of chemistry towards physics (rationality can come only from the outside of chemistry, namely 
from physics). Many years ago, one of my fellow students used to tell me “why do you care for chemistry? 
Chemistry is a closed problem; don’t we have the Schrodinger equation?’ Actually, the ambivalent status of 
theory in chemistry has factual roots. Because the pressure to produce and explain “useful” chemistry goes 
through the whole chemists’ community and reaches even the most theoretically oriented of them, because 
the chemical phenomena are complex and “useful” chemistry cannot wait, a huge mass of empirical observa- 
tions is produced which educates the chemist “intuition” before a rationally organized explanation is ready. 
Hence the success of empirical relationships (Hammett and other free energy relationships). Even if they do 
not uncover the physical (again!) roots of the phenomena, they have the value of putting order in the empiri- 
cal observations and thus to serve both as starting points and goals for further theoretical developments. 
Designing an experiment in order to verify a theory is certainly not as common an approach as in physics. 
However, there is hope for progress along these lines thanks to the availability of more and more powerful 
experimental techniques and theoretical tools. Such developments seem worth encouraging even if the inher- 
ent complexity of chemical reactions is likely to limit their success to semi-quantitative predictions. Even the 
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mere identification of the key structural and environmental factors that govern the dynamics of the various 
types of chemical reactions and the ensuing establishment of reactivity guidelines is a worthwhile goal. 
Purposely designed molecules and experiments may then serve to illustrate the pertinence of the parameters 
thus unraveled. 

Investigation of chemical reactivity in physical organic chemistry has long been the realm of electron pair 
transfer reactions. However, single electron transfer reactions have attracted increasing attention over the 
past twenty years. This interest has been concerned with outer-sphere reactions but also with more complex 
processes where electron transfer is coupled concertedly or sequentially with bond breaking or bond forma- 
tion. Much is still to be discovered in this field both in terms of mechanisms and reactivity. However, the 
prognosis of future advances seems rather favorable both from a theoretical and an experimental standpoint. 
As compared to electron pair transfers, the dynamics of chemical changes triggered by single electron trans- 
fer seems indeed more amenable to the establishment of activation - driving force relationships that do not 
merely derive from empirical observations but are based on the identification of pertinent reactivity-govern- 
ing factors as in Marcus theory of outer-sphere electron transfer reactions. It also seems important to parallel 
and/or to inspire these attempts by quantum chemical calculations, even if these are performed on such 
simplified model systems as may prove necessary for obtaining reliable results. From an experimental point 
of view, a favorable factor should be the possibility of approaching the same reaction from various angles 
(photochemistry, electrochemistry, pulse radiolysis). In this respect similarities and differences in the results 
are equally inspiring. Single electron transfer chemistry is also a privileged domain for attempting to apply 
the same reactivity concepts to organic, organometallic, and inorganic systems. Reactions at the crossroads 
of electron pair transfer and single electron transfer chemistry, where small changes in structure may trigger 
the passage from one reaction path to the other, are of particular interest for a better understanding of both 
types of reactivity and of the relationship between them. A related question deals with the nature of electron 
pair transfer reactions; are they better described as such or as inner-sphere single electron transfer processes? 
It should also be borne in mind that the unraveling of mechanism and reactivity problems in single electron 
transfer chemistry may have important consequences in other domains such as synthesis, catalysis, radical 
chemistry, and biochemistry. 

Let me close with a few (subjective) remarks on the role of electrochemistry in physical organic chemistry. 
Electrochemists are certainly happy that electrochemical data are increasingly used in the field and that more 
and more non-electrochemist users arrange to gather these data themselves by means of cyclic voltammetry 
and a few other related techniques. They however feel somewhat frustrated to see that, in a large number of 
cases, the determination of standard potentials is the exclusive goal. In this respect, reversible cyclic 
voltammograms are among the most cherished hopes and electrochemical kinetics are at best regarded as an 
unpleasant source of trouble. In fact, electrochemical kinetics is the source of precious mechanistic and 
reactivity information that may be used far beyond the boundaries of electrochemistry. Just a few examples. 

The theories of outer-sphere and dissociative electron transfers apply to both electrochemical and homo- 
geneous reactions, Testing their electrochemical version has several advantages. It should be realized in this 
connection that a cyclic voltammogram or a rotating electrode voltammogram is the equivalent of a Bronsted 
plot, as illustrated below. 7 curent 

I 
cathodic 7" curent 

potential driving force 

The continuous lines drawn in the figure are an almost exact representation of reality since the driving 
force can be changed, through the electrode potential, almost continuously with a precision of the order of 
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1 meV. The current is also a particularly convenient measure of the rate constant, making the automatic 
recording of the Bransted plot an easy task (compared with the construction of a conventional Brfinsted plot 
with a series of different reagents reacting with the substrate). Another interesting feature is that the diffusion 
rate can be easily varied, just by changing the scan rate or the rotation rate. Detailed analyses of Brginsted 
plots thus obtained, such as examination of the variation of the symmetry factor with the driving force, are 
much easier and much more precise than with conventional Bransted plots. 

More complex mechanisms can also be analyzed by similar techniques, allowing the characterization of 
the reactions that are triggered by the injection of electrons into (or removal from) a molecule. Probably the 
main mental obstacle to the diffusion of such approaches to physical organic chemistry resides in the fact that 
the conventional homogeneous kinetics must be replaced by heterogeneous kinetics taking account of the 
diffusion of the various species toward or from the electrode surface. Thus, besides the time variable, a space 
variable comes into play. There is, however, nothing insuperable in this additional complexity. The necessary 
physics and algebra have been worked out, simulation packages for PCs are available, and instrumentation is 
neither very sophisticated nor very expensive. Probably the best way to overcome these obstacles in the 
future would be to inject a small section devoted to molecular electrochemistry into the undergraduate physi- 
cal chemistry courses. It may be noted, en passant, that electrochemical kinetic concepts may be easily 
adapted to the resolution of kinetic problems in non-electrochemical heterogeneous reactions and also in 
reactions that are apparently homogeneous but are so fast that they actually occur during the mixing of 
reactants, an important area that has been rather neglected so far. 

The vast possibilities offered by indirect (mediated) electrochemistry should also be more systematically 
exploited. A reactant is generated electrochemically and its homogeneous reaction with the substrate can be 
monitored by the ensuing variation of the current. The reactions of single electrons as well as of electron pair 
donors or acceptors can be followed by this method. This in situ generation allows the investigation of very 
reactive species, the only limit being that they should react with the substrate faster than they react with any 
other molecule present in the solution. 

Instrumental combination of electrochemistry and photochemistry seems promising for determining the 
properties of transient species such as radicals, carbenes, etc ... (photolytic generation + electrochemical 
detection, electron photoinjection + electrochemical detection). The use of electrochemically generated 
chemiluminescence as a diagnostic tool has also many potential applications. 

Last, but not least, electrodes, particularly ultramicroelectrodes, chemically derivatized or coated with 
self-assembling molecules appear as a natural means to express electrically the potential properties of 
supramolecular engineered systems. Also, the templating effect of the electrode surface can be exploited to 
construct, using immunological or similar interactions, spatially ordered catalytic enzymatic systems of con- 
trolled activity. Enzymatic catalysis can thus be easily related to the current flowing through the electrode 
with possible application to biosensors or preparative biotechnologies. 
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