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Abstract: Dynamics of an exciton in the phonon field is studied with particular 
attention to  the varying feature of the optical spectra with increasing exciton- 
phonon coupling. The absorption lineshape varies gradually from a Lorentzian 
broadened by the scattering rate of the delocalized exciton to a Gaussian broad- 
ened by the energy fluctuation of the localized excitation; the latter broadening is 
narrowed into the former by the motional effect of the exciton. The luminescence 
is subject to abrupt change from the resonant sharp line of the free exciton to the 
Stokes-shifted broad band of the self-trapped exciton as coupling constant exceeds 
a critical value. The steepness constant characterizing the low energy tail of the 
absorption is inversely proportional to the coupling constant, allowing the predic- 
tion on the types of luminescence from the absorption spectrum. Depending on 
the lattice relaxation energy coping with the optical excitation energy, one can 
consider three different situations with high, low and no luminescence. As the 
ultimate instability, one can conceive spontaneous generation and condensation of 
self-trapped excitons which amounts to the electronic-structural phase transition. 
A few examples of this catastrophic situation are presented. 

INTRODUCTION 

The exciton is an elementary electronic excitation in nonmetallic solid, and plays a fundamental role 
in the optical spectra. Being a composite particle of an electron and a hole, it has two degrees of 
freedom besides spin. One is the relative motion, with its eigenstates consisting of discrete bound 
states and continuous ionized states, which manifest themselves directly in the optical spectra. The 
other is the center of mass motion, with its energy eigenvalues forming a continuous exciton band in 
the case of a bound state. However, each exciton band shows up only its particular K-point as an 
exciton line in the spectra due to the momentum conservation between the incident photon and the 
excited electron. 

The real lattice is undergoing thermal vibrations which act as scatterer for the moving exciton, 
resulting in the shift and broadening of the exciton line. This means that the spectral shape of an 
exciton line provides us with the most direct information on the dynamics of the exciton interacting 
with the phonon field. Since the interaction is mutual, the optically created exciton will make the 
surrounding lattice to deform so as to stabilize itself, resulting in self-trapping if the interaction is large 
enough. The relaxed lattice configuration is reflected in the Stokes-shift and the broadening of the 
optical emission therefrom. The spectral correlation between the absorption and emission spectra, or 
more generally speaking, the spectral and temporal dependence of the second order optical processes, 
reveals the dynamics of the optically created exciton in the phonon field throughout its radiative 
lifetime. The relaxed exciton may also result in nonradiative annihilation and defect formation. The 
study of these exciton instabilities across the band gap leads to the ultimate catastrophic situation in 
which the self-trapped exciton (STE) is destabilized against spontaneous generation and condensation, 
resulting in the electronic-structural phase transition of the entire lattice. 
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The purpose of the present paper is to describe dynamical behaviors and possible instabilities of an 
exciton in the phonon field and to compare theoretical predictions with experimental results on the 
optical spectra and the phase transitions. To make the statements as general and useful as possible, 
we will introduce a few important parameters characterizing the material, in terms of which one can 
classify different situations realized in different materials without going into the individual detail. 

A MODEL HAMILTONIAN FOR THE EXCITON-PHONON SYSTEM 

The exciton is a mobile entity, with electronic excitation propagating from site to site through the 
intersite transfer energy. With the use of the tight binding model, one can write the Hamiltonian for 
an exciton in the site representation as (ref. 1) 

where the dependence of the site excitation energy En and the intersite energy tnm on the atomic 
displacements (4) from equilibrium positions are to be taken into account. In En(q), we consider up to 
the linear terms whose sum will be written by a single coordinate Qn, namely we put En(q) = Ea-cQn. 
The intra-site (atomic or molecular) excitation energy E, at  the equilibrium position of atoms is 
common to all sites due to  the translational symmetry. The new coordinate Qn thus introduced is 
called the “interaction mode” at the site n. Being a superposition of infinite number of sinusoidally 
vibrating normal modes with continuously distributed frequencies, Qn relaxes to the new equilibrium 
position as the result of dephasing. It is a localized mode in the sense that the atomic displacement 
pattern associated with Qn is confined to the region which is affected by the electronic excitation at  
the site n. This pattern around the site n is the same as that of Qm around the site m due to the 
translational symmetry. One can visualize Qn e.g. as an intramolecular mode or as a breathing mode 
around the site. It is to be noted that (Qn) are neither normal modes nor orthogonal, nor complete. 
For simplicity, however, we will treat them as normal modes. Then the Hamiltonian for the atomic 
motion in the ground electronic state of the crystal can be written as 

where Qn is so normalized that the vibrational frequency appears in the kinetic energy term. This 
choice is more natural for the adiabatic approximation whose validity is assured by the smallness of 
w. Neglecting the q-dependence of transfer energies, one can now write down the total Hamiltonian 
for the exciton phonon system as 

LOCALIZED VERSUS DELOCALIZED EXCITATION 

Let us consider the limit of vanishing t ’ s  which corresponds to the case of intra-site or “localized 
excitation”. Confining the excitation to the site n, one can write the adiabatic energy for this excited 
state as 

where ELR = c2/2.  In the configuration coordinate (C.C.) space (Q), the lattice relaxation after the 
F’ranck-Condon excitation of the site n takes place in such a way that only Qn approach the new 
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Fig. 1: Configuration coordinate models for localized excitation (a) and exciton (b), and excitonic 
band in rigid lattice (c) 

equilibrium position c, with the corresponding energy decrease by ELR which will hereafter be called 
“lattice relaxation energy”. Other modes Qm(m # n) are not affected by this localized excitation: 
(g) +(en). Since the adiabatic energy difference between these states is given by Wcen)(Q) - V ( Q )  = 
En(&) = E, - cQn, the lineshape calculation of the absorption spectrum in the Franck-Condon 
approximation also reduces to the problem of one-dimensional C.C. model which is schematically 
shown in Fig. l (a) .  The normalized lineshape at  high temperature, as given by 

F(E) = 1 d Q , ( k k ~ T ) - ’ / ~  exp{-Q:/(Pk~T)} b[Ea - CQn - E] 

= (2r02)-’/’ exp{-(E - Ea)’/202}, 
with 0’ = (( ( -C&,)~) )  = ~ E L R ~ B T ,  

is a Gaussian, with its width D representing the mean amplitude of the fluctuation of local excitation 
energy. 

Let us then consider the opposite limit of vanishing exciton-phonon interaction. The eigenstates 
are given by the Bloch type exciton states: IK) = N-’12 C n e x p ( i K  . %)In). For a simple d- 
dimensional lattice with only the nearest neighbor transfer energy t ,  the eigenenergy is given by 
E ( K )  = E, + 2t x$l cos(Kia0) where a0 is the lattice constant. As shown in Fig. l(c),  the exciton 
band extends from E, - B to E, + B where the half band width B = 2dltl represents how mobile the 
exciton is: the time needed for an exciton to move to any of the nearest neighbor is given by B-’ 
(the unit with h = 1 will be used throughout the paper), as is also obvious from the uncertainty 
principle. If t < 0, the optically allowed exciton state with K = 0 is at  the bottom of the exciton 
band-the “direct gap” case which will mainly be considered hereafter unless otherwise stated. 

The effect of the exciton-phonon interaction Hep on the line width can be described by the following 
exact expression for the lineshape (ref. 1) .  Denoting the eigenvalues and eigenstates of H(Q) = 
He + Hep(Q) by E,,(Q) and Iv(Q)), respectively, and the optically allowed eigenstate IK = 0) of He 
simply by lo), one can write the normalized lineshape as 

0 1997 IUPAC, Pure andApplied Chemistry69,1171-1178 



1174 Y. TOYOZAWA 

where the complex self-energy of the exciton: C K ( E )  = A K ( E )  + ZTK(E) due to the scattering by 
fluctuating potential Hep is to be determined self-consistently from 

C K ( E )  = C ( ( I ( H e p ( Q ) ~ ~ ~ 1 2 ) )  [E - E K ~  - CK~(E)]- ’  + (higher order terms). 
K’ 

In the lowest order perturbation theory, one obtains the golden rule for the transition rate: 

r K ( E )  = d p ( O ) ( ~ )  (11) 

with the use of the statistical average of fluctuation as given by eq. (8). Here, ,do)(E) = N-lCkb(E - 
E K )  is the normalized density of states (DOS) of the unperturbed He, which amounts to (2B)-I if 
it is assumed for simplicity to be constant within the band (E ,  - B,  E, + B) .  Then one obtains a 
Lorentzian lineshape, with energy independent half-width I?,, = (7r/2) D 2 / B  (.: T )  which represents 
the scattering rate. 

The above result based on the perturbation theory holds in the weak scattering regime (D << B ) ,  
whereas we already obtained a Gaussian lineshape in the strong scattering regime ( D  >> B ) .  The 
nature of exciton changes gradually from localized to delocalized type as B ,  the energy transfer to 
nearest neighbors, increases and overcomes the potential fluctuation D. Physical meaning of the line 
width also changes from the local energy fluctuation D to the scattering rate I?. The fact that the 
latter is smaller than D by a factor D / B  (< 1 in this weak scattering regime) is due to the motional 
narrowing effect, as is also well known in the ESR study. The exciton stays on each site for a time of 
the order of B-l, which is shorter than the time needed for it to perceive the local energy fluctuation 
D according to  the uncertainty principle. As the result, the spatial fluctuation perceived by the 
moving exciton is reduced by this time ratio, D / B ,  which is called “narrowing factor”. 

Theoretical predictions are in satisfactory agreement with observations of the absorption lineshapes 
in a variety of inorganic and organic materials which in fact are widely distributed from weak to 
strong scattering regime. However, the low energy tails of the exciton absorption spectra of the weak 
scattering materials have been found to decay exponentially with a decay constant being proportional 
to reciprocal temperature (at high temperature): 

F ( E )  = Aexp[-a(EI, - E)/lcBT] (12) 

where E’ is close to the absorption peak and the steepness constant u is a dimensionless material 
constant. The universality and simplicity of this empirical rule-now called “Urbach rule”-evoked 
a number of theoretical and experimental studies to explain it on a microscopic basis. 

According to  the weak scattering expression (11) for r ( E ) ,  the absorption spectrum given by eq. (9) 
vanishes below the bottom of the exciton band. In fact, there should be localized states below the 
band bottom originating from the spatial fluctuation of the potential V, = -cQ, a t  each instant which 
is also temporally fluctuating following the Gaussian distribution exp( - Q i / 2 k ~ T )  of the Boltzmann 
statistics (see eq. (7)). Suppose the Urbach rule (12) is derivable from the exact expression (9) with 
the use of the Hamiltonian (3) under the above mentioned statistical distribution of Qn’s at high 
temperature where w can be neglected. If the energy is measured in unit of B,  the only parameter 
governing the lineshape is the scattering strength D / B  as mentioned before. The exponent in eq. (12) 
should then be of the form: [(EI, - E) /B][B /DI2  (times a dimensionless constant) in order to give the 
factor: T-‘ (see eq. (8)). The material constant o in the empirical rule (12) should then be related 
with the exciton-phonon coupling constant g defined by 
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through 

0 = s / g  (14) 

where s, called “steepness index”, is a dimensionless parameter which may depend on the geometrical 
factor such as lattice structure and dimensionality but no more on the individual material. 

Various method beyond the perturbation theory, such as the t-matrix approximation (ref. 2) and the 
coherent potential approximation (CPA) (ref. 3) , were applied to incorporate the localized states into 
the self-energy so as to derive (12). As the most straightforward method free from any sophistication, 
the Monte-Carlo calculation was performed for 1-, 2- and 3-dimensional simple lattices by direct 
diagonalization of the energy matrix: H(Q) for each configuration (Q1, Q2,. . .) with the Boltzmann 
statistics (ref. 4). The Urbach rule (12) for the tail part (as well as the Lorentzian shape of the main 
part) was in fact reproduced, and the steepness indices s were obtained for each dimensionality and 
for direct and indirect gap cases. The analysis of wave functions not only confirmed the conjecture 
that the exponential tail originates from the localized states, but also endorsed the CPA to be a good 
approximation. The exciton-phonon coupling constant (13) had in fact been introduced in the study 
of relaxed exciton before the explanation of the Urbach rule, as will be described in the next section. 

THE RELAXED EXCITON IN DEFORMABLE LATTICE 

So far we studied the optical excitation energy, the eigenvalues E(Q)  of H(Q) ,  as functions of the 
atomic configuration (Q) which is regarded as external variable governed by the Boltzmann statistics: 
exp[-U(Q)/k~T].  In other words, we were concerned with the Franck-Condon states. Let us now 
study what happens with the atomic configurations under the existence of an exciton as time goes on 
after the optical transition. In order to describe the dynamics of this relaxation, we have to include 
U(Q) so as to deal with the adiabatic potential: W(ev)(Q) = E,(Q) + U(Q). 

The situation is obvious in the two limiting cases. Under the absence of exciton-phonon interaction 
(c = 0), the optically created exciton will stay at the bottom of the exciton band with energy 
Eo = E, - B. Under the absence of transfer t ,  the exciton will stay localized at  some site n, with 
Qn relaxing to c so as to minimize W(e”)(Q) to E, - E L R  (see eq. (6)). What will happen under 
the coexistence o f t  and c? The question is to be answered most properly by studying the adiabatic 
potential W(e”o)(Q) = E,o(Q) + U(Q) for the lowest eigenstate E,o(Q) of H(Q)  and by looking for its 
minima, as is done elsewhere (ref. 1). However, if one is interested only in the minimum points of the 
adiabatic potential W(evo)(Q), all one has to do is to minimize the expectation value of H(Q) + U(Q) 
with respect to both the wave function $ and the atomic configuration (Q). A simpler way to perform 
this is first to  minimize with respect to (9) for fixed $ and then to minimize with respect to $, since 
the practically intractable work of looking for the minima in the multidimensional (&)-space is thereby 
reduced to an appropriate choice of the trial wave function $ (inverse adiabatic approximation! which 
is justified only for this purpose). 

We choose the trial wave function localized around a site with orbital radius a as the only variable 
parameter, since we are particularly concerned with the intermediate situation between the completely 
delocalized (u = m) and completely localized (a = a0 since $ is an envelope wave function for the 
center-of-mass motion) states. The expectation value of H + U(Q), after minimization with respect 
to (Q), is then given by 

E(a)  = E, - B + B ( U ~ / ~ ) ~  - E L ~ ( a o / ~ ) d .  (15) 

To derive or confirm this formula, one first note that it reduces to E, - B and E, - ELR in the 
limits of delocalization and localization, in accordance with what was mentioned above. Secondly, the 
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first three terms of (15) is the expectation value of He in the effective mass approximation, the third 
term representing the kinetic energy for localization (the uncertainty principle). The fourth term is 
the result of minimizing the expectation value ($IHep(Q)I$) + U ( Q )  with respect to (Q). In fact, 
the minimization gives Qn = -ci$(n)12, and putting this value in, one obtains - ( c 2 / 2 )  En l$(n)I4. 
Considering that l$(n)lz has significant values of the order of M-’ within the region of volume ad 
containing M N ( a / a ~ ) ~  sites, one obtains the power d for this fourth term. 

The minima of eq. (15) with respect to X = ao/a (0 < X < l), the degree of localization, correspond 
to the minima of the adiabatic potential, namely the relaxed excited states (RES). The situation 
depends on the dimensionality of the lattice. For d = 3, one has two RES’s: the free state F (A  = 0) 
and the self-trapped state S (A  = 1) when the coupling constant g defined by eq. (13) is greater than 
2/3. When g exceeds unity, the stable state changes abruptly from F to S, but F remains to exist as 
a metastable state. The maximum at X = 2/39 corresponds to the adiabatic potential barrier (saddle 
point in (&)-space) of height Eb = 4B/27g2 above F which must be surmounted for the free exciton 
to become self-trapped. The adiabatic picture for this activation process is shown schematically in 
Fig. l (b)  by a solid curve connecting F and S (assumed to be metastable here). Note that two different 
aspects of our problem are incorporated in this Fig. (b): namely the adiabatic picture for localized 
excitation shown in Fig. (a) and the band picture for delocalized excitation shown in Fig. (c). One 
can expect from this Figure that the exciton luminescence in the coexistent case (2/3 < g < m) 
consists of two components: a sharp resonant line from the F state and a Stokes-shifted broad band 
from the S state. 

With d = 1, one has the only minimum at X =Min.{(g/2), 1). This means that the nature of 
RES changes gradually from F-like to S-like as g increases. The optically created free exciton will 
straightforwardly relax to this RES without surmounting any potential barrier. This RES may better 
be called “polaron state” since the situation resembles the electron interacting with polar mode of 
lattice vibrations in 3-dimensional lattice. 

We are now in a position to correlate absorption and luminescence spectra. The latter is subject to the 
abrupt change as g exceeds unity, while the former is not subject to such an abrupt change. Moreover, 
the gradual change from weak to strong scattering is governed by the ratio D / B  = ( 2 g k ~ T / B ) ’ / ~ .  
Except in molecular crystals with small B ,  there is a wide range with “weak scattering but strong 
coupling” (B/kBT > g > 1). In this case, the optically created exciton behaves as a nearly free 
particle until it finally surmounts the potential barrier to become self-trapped, as is the case in 
many materials inclusive of alkali halides. However, the steepness constant of the low energy tail of 
the absorption spectrum is directly related with g through eq. (14), as it should since the tail part 
originates from localized states (not from the scattering states which are responsible for the main part 
of the absorption peak). 

These predictions are in satisfactory agreement with observations on a variety of materials (ref. 1). 
Abrupt change of low temperature luminescence from F to S type has been observed in mixed crystal 
AgCl,Brl-, when x exceeds x, = 0.45 and in some aromatic molecular crystals under the change of 
applied pressure. The prediction on the absorption-luminescence correlation through eq. (14) is in 
excellent agreement with observations. It gives a criterion that F or S is more stable according as 
u is greater or smaller than uc (1.64 for direct and 0.93 for indirect gap in 3-dimensional crystal). 
Almost all materials (organic and inorganic) of which u has been measured (ranging from 3.0 of CdTe 
to 0.76 of NaC1) and F-S relative stability has been confirmed are in conformity with this criterion. 
Of particular interest is the indirect exciton absorption edge in AgC1,Brl-,, of which the measured 
u decreases from 0.98 for x = 0 to 0.78 for x = 1, taking the value 0.89 at the abrupt change of 
luminescence, in excellent agreement with the predicted 0,. 
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COMPETITION BETWEEN RADIATIVE AND NONRADIATIVE 
ANNIHILATIONS 

Let us now consider the situation where the crossing of the adiabatic potentials of the relaxing exciton 
and the ground state comes into play, and apply the Dexter-Klick-Russel criterion on the competition 
of radiative and nonradiative recombination processes. Making use of the model shown in Fig. 1 but 
confining ourselves to the case in which S is more stable than F, one can consider the three possible 
cases (ref. 5) in the increasing order of ELR against Eo, as shown in Fig. 2 where Eo is varied against 
ELR . 

In case (i) in which the crossing point is situated higher than F, the nonradiative transition is im- 
probable except a t  high temperature. The quantum yield for luminescence is nearly unity. Because 
of long radiative lifetime, quasi-thermal equilibrium in population may be established between F and 
S excitons, which allows the estimation of the F-S energy difference from the temperature dependent 
intensity ratio of F- and S-type emission bands, as was done for some aromatic crystals. 

In case (ii) in which the crossing point is situated lower than F but its abscissa is still beyond the 
minimum point Qm, it is energetically possible for the relaxing exciton to reach this point (after 
overshooting Qm) where it will make nonradiative transition to the ground state with significant 
probability. The opening of this nonradiative channel affects most directly the steady state population 
of STE’s, making the quantum yield of luminescence much lower than in case (i). The temperature 
dependence of the intensity of the F-type emission in the steady state allows one to estimate the height 
of potential barrier for self-trapping. The STE’s in alkali halides which have been most extensively 
studied belong to this case. 

In case (iii) of Fig. 2 realized when Ea/2 < ELR < E,, the RES cannot emit a photon since there is 
no lower electronic state at Qm. It may not be appropriate to call such state as a relaxed exciton. 
The formation of a pair of F and H centers in irradiated alkali halides, and probably some of the 
photo-structural changes in amorphous semiconductors belong to this case. 

The case U is a fictitious situation where the RES has lower energy than the ground state (E,-ELR < 
0); namely the ground state from which we started is unstable. However, there is an instructive 

Fig. 2: Adiabatic potentials for the groundstate and the free and self-trapped excitation for various 
values of Eo, the energy of the optical exciton. 
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example of material of which one can start from a conceptually simple but actually false ground state 
and get to a real but complicated ground state (ref. 6). That is the Wolffram's reds, a quasi-one 
dimensional material of which the skeleton consists of an alternate array: (Cl- - Pt3+ - 1 1  2n 

which is a simple (and metallic) but false ground state. The real ground state is an insulator with 
a complicated structure of doubled period: (Cl- - Pt4+ - C1- - Pt2+ - which can be 
reached from the former through the Peierls transition with charge density wave of large amplitude. 

CONDENSATION OF SELF-TRAPPED EXCITONS AND THE 
PHASE TRANSITION 

In the context of our argument, the example of phase transition mentioned in the last section can 
be described in terms of spontaneous generation, a t  all unit cells, of self-decomposed electron-hole 
pairs-the parity-broken STE's. The self-decomposition takes place as the result of phonon-mediated 
electron-hole repulsion (due to different signs of deformation potentials) counterbalancing the direct 
coulomb attraction, and in fact, the majority of STE's in alkali halides are known to belong to this 
type. If such STE's were formed at all lattice sites, there should be significant interaction among 
them. Assuming them to be attractive, one could define the cohesive energy per one STE which will 
be denoted by E,. If the energy of the condensed state of STE's per unit cell, given by E, - ELR - E,, 
is negative, the new phase become more stable than the ground state from which we started (ref. 7) 
(even if E, - ELR is still positive). 

Such a dramatic phase transition can be seen among quasi-one dimensional charge transfer compounds 
with mixed stacking of donor (D) and acceptor (A) molecules. They undergo the neutral-ionic (NI) 
transition, approximately described as (D0Ao)" to (D+A-)n, under decease in temperature or by 
applying pressure. It is considered that the contraction of D-A distance a results in the increase of 
Madelung energy 1.2e2/a so as to overcome the redox potential A of D and A. We will present here a 
qualitative argument supporting our condensation model. A localized charge transfer (CT) exciton, 
after self-decomposition, consists of a D+A- pair in N-phase matrix with dipole moment p = aedp, 
where bp denotes for the actual fraction of charge transfer. The cohesive energy for such STE solid is 
then given by the sum of dipole-dipole interactions which amounts to E, = l . 2 . 2 $ / ( 2 ~ ) ~  N 0.37 eV in 
the case of TTF-chloranil if we tentatively assume bp N 0.6. At the NI transition point, E, - ELR - E, 
vanishes. From the C T  exciton peak observed at  0.76 eV, one obtains ELR N 0.39 eV, satisfying the 
criterion for the absence of luminescence: ELR > E,/2.  The half-width of  the exciton band, given by 
the second order expression: B N 2 t 2 / A  (ref. 8 )  for the nearly N phase, turns out to be N 0.04 eV 
if D-A transfer energy It1 is assumed to be 0.3 eV. This assures our assumption of strong scattering: 
D = ( 2 k ~ T  * ELR)1/2 >> B. On the other hand, with a microscopic model that D+A- distance gets 
shorter due to their coulomb attraction, ELR can be estimated to be 0 .8 (ebp)4 / (Mrw$a4)  N 0.34 eV 
where M, denotes for the rqduced mass of D-A pair and W N  for the observed angular frequency of the 
optical mode of lattice vibration in the N phase. This value of ELR is not far from the above value, 
in spite of the independent ways of estimation. Thus we can construct a physically reasonable and 
consistent description of the NI transition in terms of spontaneous generation and condensation of 
STE's. 
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