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Abstract: The molecular Ornstein–Zernike (MOZ) formalism used to compute the structure
of a liquid solution is briefly presented. Its ability to describe the equilibrium properties of
aprotic solvents and of their electrolyte solutions is demonstrated from selected examples.
The potential of mean force and the relative motion of ions in water are studied by the pow-
erful method of intermolecular nuclear magnetic relaxation dispersion (NMRD) in paramag-
netic solutions. The interest of the ion–ion dynamics in medical magnetic resonance imaging
(MRI) is shown by a typical NMRD study involving paramagnetic gadolinium Gd3+ com-
plexes. 

INTRODUCTION

Among the numerous applications of chemical thermodynamics, the description of electrolyte solutions
has generated a vast literature [1] because of their practical interest and the fundamental challenge to
correlate solution properties with the very discrete nature of strongly interacting ions and solvent mol-
ecules. We present recent advances in the statistical mechanics of liquids, which, thanks to modern
computers, make it possible to rapidly calculate a structure of solution, i.e., the equilibrium distribution
of the different species, at least at the two-particle level. In the second section, we briefly recall the
molecular Ornstein–Zernike (MOZ) formalism [2–5], which we use to compute the liquid structure and
which can be a very fast alternative to simulations. The third section demonstrates the accuracy of the
hypernetted chain (HNC) approximation of the MOZ theory for electrolyte solutions in aprotic solvents.
In the fourth section, we study the relative distribution and motion of ions in paramagnetic aqueous
solutions by nuclear magnetic relaxation dispersion (NMRD). Particular care is taken to present the
main concepts required to interpret the experiment. How such an investigation can help to characterize
the efficiency of Gd3+ chelates for medical magnetic resonance imaging (MRI) is also shown. Finally,
the context of the present work and promising future developments are discussed in the fifth section. 
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INTEGRAL EQUATION FORMALISM

Consider a general liquid mixture [2–6] made of neutral and charged anisotropic molecules of species
indexed by A, B, X…. The system is characterized by the set of direct intermolecular potentials
UAB(12) in vacuo and by the numerical densities ρX of the various species X, i.e., the number of X mol-
ecules per volume unit. Denote the coordinates of position and orientation of a molecule by numbers
such as 1, 2, 3. The total correlation function hAB(12) between two molecules of A and B species, of
coordinates 1 and 2, is defined as 

(1)

and represents the deviation of the A/B pair distribution function gAB(12) from the uniform distribution
value 1, which corresponds to a structureless continuum. The function hAB contains all the statistical
structural information on the spatial correlations of two molecules of species A and B due to their direct
intermolecular potential UAB(12) in vacuo and to their interactions with the neighboring molecules. The
set of functions hAB(12) describes the liquid structure at the two-particle level. 

The integral equation approximations rest on the judicious splitting of each function hAB(12) into
the so-called direct and indirect correlation functions cAB(12) and ηAB(12) as 

(2)

where cAB(12) and ηAB(12) are the numerical solutions of the following system of coupled equations: 

(i) the Ornstein–Zernike (OZ) convolution relations 

(3)

where d3 = dR3dΩ3 is the elementary integration volume over the position R3 and the orientation Ω3
of a molecule of species X. 

(ii) the closure equations 

(4)

where BAB(12) is a so-called bridge function which often has simple and quite accurate approximations
despite its intricate dependence on the liquid structure. For instance, within the popular hypernetted
chain (HNC) approximation, we have BAB(12) = 0. Then, there are as many OZ and closure equations
as unknown functions cAB and ηAB to be determined. The numerical solution of the HNC approxima-
tion of the present molecular Ornstein–Zernike (MOZ) theory is based on the expansion of the molec-
ular correlation functions in series of rotational invariants [2] and can be computed by iterative algo-
rithms [3–6]. 

ELECTROLYTE SOLUTIONS IN APROTIC SOLVENTS 

Each intermolecular potential UAB(12) is described as the sum of a short-ranged site–site contribution
and an electrostatic part [6–9]. The molecular polarizability is taken into account by an enhanced dipole
moment calculated by a self-consistent mean field (SCMF) approach [3,6,9]. 

Structure of solvents 

We consider unpolarizable models of acetonitrile and acetone at 298 K and of chloroform at 293 K
[7,8]. In Fig. 1, typical site–site distribution functions, calculated by the MOZ-HNC approximation, are
compared with Monte-Carlo (MC) and molecular dynamics (MD) simulation data. Besides slight shifts
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to shorter distances in the positions of the first peaks, the MOZ theory is quite accurate and represents
a notable progress with respect to the less complex site–site Ornstein–Zernike (SSOZ) approximation
[10]. The MOZ dielectric constants ε of acetonitrile, acetone, and chloroform are 18.5, 9.2, and 2.3, and
compare favorably to the simulation data 16.7, 9.0, and 2.4 to 2.6, respectively. 

Ionic solvation

We study the solvation of simple alkali and halide ions in a model of polarizable acetonitrile [9] at
298 K. The MOZ-HNC approximation leads to a dielectric constant ε = 36.4 in very good agreement
with the experimental value 35.9. A realistic value of the solvent dielectric constant is essential for a
correct description of the ionic interactions in solution because it governs the long-range behavior of
the ion–solvent and ion–ion correlation functions. The MOZ ion–solvent intercenter distribution func-
tion gis,00

000 and the orientational correlation 〈cosθRµ〉 are shown in Fig. 2 for Na+ in acetonitrile. Each
maximum in the gis,00

000 function indicates a solvation shell. It is usually expected that the negative end
of the solvent molecule points toward the cation, which corresponds to negative values in the 〈cosθRµ〉
function. This is observed for the first and third solvation shells, whereas the solvent molecules in the
second shell have an unexpected opposite orientation (see arrows in Fig. 2). Recent comparisons with
the results from MC simulations show that this energetically unfavored orientation is not an artifact of
the approximate HNC closure. The surprising formation of the anomalous second shell can be explained
as follows. As shown in Fig. 2, it is due to the persistence of molecular antiparallel arrangements that
correspond to the most probable configuration in pure liquid acetonitrile. Obviously, the solvation struc-
ture is strongly influenced by the solvent–solvent spatial correlations. This is a very general phenome-
non, because it is also observed for the other ions in acetonitrile and for the solvation in acetone. Finally,
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Fig. 1 (a) The carbon–nitrogen distribution functions gCN(r) in acetonitrile. (b) The hydrogen–hydrogn distribution
function gHH(r) in chloroform. 

Fig. 2 (a) The intercenter distribution function gis,00
000 of the Na+/CH3CN pair and the orientational correlation

〈cosθRµ〉 between its intercenter vector and the CH3CN electric dipole. (b) Preferential Na+/CH3CN and CH3CN/
CH3CN arrangements in the solvation structure. 



the MOZ Gibbs solvation energies of salts of alkali and halide ions are in good agreement with the
experimental values, apart from salts including small ions. 

Concentrated solution of dissociated ions 

We apply the SCMF/HNC approximation of the MOZ theory to a 0.4 M solution of cryptates
K+222/ClO4

– in deuterated acetonitrile [6]. The model of polarizable acetonitrile in the pure solvent and
the theory are both justified by the excellent agreement between the MOZ intermolecular neutron-scat-
tering cross-section I inter and the experimental data [11] displayed in Fig. 3a. In the concentrated solu-
tion, the parameters defining the short-ranged intermolecular potentials involving the dissolved molec-
ular ions cannot be easily computed by ab initio quantum calculations. However, the short computer
time needed to calculate the numerical solution of the MOZ theory enables us to fit these parameters so
as to reproduce the small-angle neutron-scattering (SANS) data shown in Fig. 3b. The various pair dis-
tribution functions, which lead to the theoretical SANS results and define the solution structure, are then
justified. This structure can be analyzed and additional properties computed. This is a generalization to
discrete solvents of a method widely used in the case of a dielectric continuum [1]. 

RELATIVE DISTRIBUTION AND MOTION OF IONS IN AQUEOUS SOLUTIONS:
INTERMOLECULAR NMRD STUDIES

As early as 1953, Torrey [12] envisaged intermolecular nuclear relaxation as an investigation tool for
the condensed matter. Starting at the beginning of the 1960s, Hertz et al. [13,14] undertook a system-
atic study of the liquid state by measuring the intermolecular relaxation rates of numerous nuclei on
molecules and ions in a wide variety of pure solvents, liquid mixtures, and solutions. Indeed, this is a
particularly suitable method for probing the relative distribution and motion of two given species. 

Theory of the intermolecular nuclear relaxation in paramagnetic solutions [15–18]

The intermolecular nuclear relaxation is more easily measured and interpreted when it is due to para-
magnetic solutes which are the major source of relaxation of the nuclear spins I carried by the mole-
cules MI. These paramagnetic solutes are either free radicals, ions of the transition group or of the rare
earth group. In this article, we only consider paramagnetic molecules MS, the moments me of which
have negligible contributions from the orbital angular momenta of the electrons. These moments are
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Fig. 3 (a) Intermolecular neutron-scattering cross-section I inter for pure acetonitrile. (b) Total neutron-scattering
intensity I for a cryptate solution in this solvent. 



those of “pure” spins, i.e., me = –gSµBS with gS = 2. This is the case for free radicals, complexes of
(3d)5 metal ions such as Mn2+ and Fe3+, and complexes of (4f)7 lanthanides such as Gd3+. 

In a fixed external magnetic field B0, the observed longitudinal and transverse relaxation rates
R1 = 1/T1 and R2 = 1/T2 of a given nuclear species in the presence of solutes carrying electronic mag-
netic moments me are 

(5)

where Ri
0 = 1/Ti

0 are the relaxation rates of these nuclei in the absence of any paramagnetic species (dia-
magnetic solution). Then, even at very low concentrations cS in mol.L–1 of paramagnetic solutes carry-
ing “pure” spins, their intermolecular interactions yield the main contributions Rin

e = RiS = 1/Ti
inter to

the measured rates. The paramagnetic intermolecular relaxation rates Rin
e are essentially proportional to

cS, so that it is often convenient to introduce the relaxivities ri = Rin
e . The paramagnetic intermolecular

relaxation arises from two mechanisms: (i) the dipolar magnetic interaction between the investigated
nuclear spin I and the electronic spin S; (ii) the hyperfine scalar coupling between I and S when there
is some unpaired spin density of the electrons at the nucleus. Then, the total intermolecular relaxation
rates are 

(6)

where 1/Tidip
inter, 1/Tis

inter are the dipolar and scalar contributions, respectively. The detailed theory giving
the corresponding expressions of the relaxation rates was given previously [15–18]. Let γI, γS be the
gyromagnetic ratios of the I and S spins, respectively, and ωI = 2πνI = | γI | B0, ωS = 2πνS = | γS | B0
their associated Larmor angular frequencies. We have γS >> γI and ωS >> ωI. 

Dipolar intermolecular nuclear relaxation
Within the Solomon model of nuclear relaxation, which neglects the relaxation of the electronic spins,
the intermolecular dipolar magnetic relaxation rates are

(7)

(8)

where the dipolar spectral density j2(ω) is the Fourier transform 

(9)

of the time correlation function g2(t) 

(10)

of the random functions r–3Y2q(θ,φ) which define the intermolecular dipolar magnetic Hamiltonian and
depend on the relative position vector r(r,θ,φ) of the interacting spins I and S. The spectral density j2(ω)
is proportional to the number density NS = 10–3cSNAvogadro in cm–3 of the electronic spins. It is con-
venient to introduce the natural units of the relative translational diffusion of the two interacting mole-
cules. The length unit is the minimal distance of approach b of the centers of these molecules approxi-
mated as hard spheres in this work. The time unit is their translational correlation time τ = b2 / D, D
being their relative diffusion coefficient. Here, D is assumed to be the sum D = DI

t + DS
t of the self-
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diffusion constants DI
t and DS

t of the diamagnetic and paramagnetic species, respectively. Then, j2(ω)
can be expressed in terms of the reduced dipolar spectral density j2

–
(ωτ) as 

(11)

The reduced spectral density j2
–

(ωτ) also depends on the rotational diffusion constants DI
r and DS

r

of the two species and on the eccentricity parameters (ρI/b)2, (ρS/b)2, where ρI, ρS are the distances of
I and S to the centers of their respective molecules. It has been shown [15–18] that j2

–
(ωτ) can be

expressed in a power series of these eccentricity parameters, where obviously the leading term of j2
–

(ωτ)
corresponds to the situation where the spins are located at the ion centers. Then, the time correlation
function g2(t) reduces to 

(12)

where R0(R0,Θ0,Φ) and R(R,Θ,Φ) are the intercenter vectors at time t = 0 and time t, respectively. The
spatial correlations between the interacting species shows up in their equilibrium pair distribution func-
tion gIS, also given by the Boltzmann exponential 

(13)

of their potential of mean force (PMF) wIS, which is an effective thermal potential that can be obtained
from the MOZ theory. The conditional probability, ρ(R0,R,t), of finding the molecule centers at the rel-
ative position R at time t given that they were at R0 at time t = 0, is assumed to be the solution of the
Smoluchowski generalized diffusion equation

(14)

with the initial condition ρ(R0,R,t = 0) = δ(R – R0) and the hard sphere boundary condition. The
numerical procedure for solving the Smoluchowski diffusion equation and calculating the spectral den-
sity j2

–
(ωτ) has been described elsewhere [15]. 
Equation 12 is the meeting point between the relaxation measurements and the theory of liquid

solutions requiring a model for calculating the pair distribution function (13). The interpretation of the
relaxation needs the Fourier transform J2(ω) of the correlation function G2(t), and more generally the
Fourier transform j2(ω) of g2(t). As the intermolecular relaxation rates 1/Tidip

inter depend on j2(ω) values
calculated at Larmor frequencies ωI and ωS, which are proportional to the field B0, NMRD studies allow
to determine j2(ω) over a large frequency range, and thus to better characterize the relative dynamics of
MI and MS through g2(t). 

Hyperfine scalar intermolecular nuclear relaxation
The hyperfine scalar coupling between a nuclear spin I and an electronic spin S can be expressed as
[15–17] 

(15)

where the coupling function A(r) is conveniently written in terms of a dimensionless quantity a(r) as
A(r) = (γIγSh–/b3)a(r). This simplifies any comparison between the magnetic dipolar and hyperfine con-
tributions to the total intermolecular relaxation rates. Within the Solomon model of nuclear relaxation,
the fluctuations of the coupling function A(r) resulting from the random relative motions of the inter-
acting spins lead to the following nuclear relaxation rates:

(16)
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(17)

where the scalar spectral density jS(ω) is the Fourier transform of the hyperfine time correlation func-
tion gs(t) = 〈a(rt=0)a(rt)〉. 

Hyperfine coupling determination by frequency shift measurements 
Contrary to the dipolar coupling, which has a well-known long-ranged dependence on the interspin vec-
tor r, the magnitude and spatial dependence of the short-ranged hyperfine coupling function a(r) has to
be determined by complementary measurements [16,19]. For each nuclear spin I of frequency, this can
be done by measuring the shift ∆ν = ν – ν0 of its resonance frequency ν induced by the introduction of
paramagnetic solutes ν0 in the diamagnetic zero solution. This shift arises from two contributions of the
thermal averages 〈me〉 of the magnetic electronic moments. The first one is due to the long-ranged dipo-
lar coupling with the averages 〈me〉 of the moments located in the whole sample and is related to
demagnetizing field effects. The second one stems from the hyperfine scalar coupling with the moments
very near the considered nucleus. Then, the total relative frequency shift in a paramagnetic solution
reads

(18)

The dipolar contribution to this relative shift is easily calculated and given by

(19)

where the factor Sf depends on the sample form and is Sf ≅ –4.1 for a typical NMR thin cylindrical tube
with a ratio (height/diameter) ≅ 10. The susceptibility per volume unit χpara of the paramagnetic solutes
is χpara = NSgS

2µB
2S(S + 1)/(3kBT). For the free-radical spins studied, for which S = 1/2 and gS = 2, we

have 

(20)

The hyperfine scalar coupling is a short-ranged interaction that induces a relative frequency shift
independent of the sample shape. For an electronic spin S = 1/2, it is given by

(21)

where a(r)
—–

is an average over the equilibrium pair distribution function gIS(R). The function a(r) is com-
monly taken to be proportional to an exponential factor exp(–λsr), which describes the short-range
decay of the ground-state electronic wave function and consequently of the free-electron density at a
distance r from its mean position. Here, we assume that a(r) = (c/r)exp(–λsr), where the factor 1/r is
introduced for mathematical convenience. We can expect a value of λs of the order of 1 Å–1, while the
factor 1/r has a much slower decrease than the exponential and has no physical importance. Now, we
have all the necessary ingredients for interpretating the experimental frequency shifts. 

Theoretical description of the ionic solutions in water

Solution model
Each water (w) molecule is modeled by a hard sphere of diameter dw = 2.8 Å, with an embedded cen-
tral polarizable electric dipole and a tetrahedral electric quadrupole [3]. The dipole, quadrupole. and
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dipolar polarizability have their experimental values. The ions considered here are rather symmetric and
are approximated as hard spheres. 

Ion–ion potential of mean force 
Our model of liquid solution is a mixture of hard spheres with embedded electric multipoles. Then, in
the framework of the MOZ theory, the spatial correlations between the molecules can be taken into
account more precisely by using reference closures, i.e., by approximating the bridge functions in the
model of electrolyte solution by their counterparts in the mixture of neutral hard spheres of the same
composition [16,18]. Our solutions contain small or moderate finite concentrations (FC) of the various
ions. Then, the potential of mean force (PMF) wIS

FC of the interacting ions can be derived from its infi-
nite dilution limit wIS

ID [20] within the Debye–Hückel (DH) limit, as follows [16,18]. On the one hand,
to calculate the water–water spatial correlations, the simple reference linearized HNC (RLHNC)
approximation is used, since it leads at 25 °C to a theoretical dielectric constant of pure water ε = 77.5
that compares favorably with the experimental value 78.5. This ensures an accurate treatment of the
long-range Coulomb forces between the ions. The ion–water spatial correlations are also computed
using the RLHNC approximation. On the other hand, the infinite dilution ion–ion PMF wIS

ID is obtained
within the more accurate reference HNC (RHNC) approximation from its straightforward expression in
terms of the ion–ion indirect correlation function ηIS. The Debye–Hückel expression of wIS

FC (R) for the
ions MI and MS, of charges qI = zIe and qS = zSe, reads 

(22)

The inverse κ of the Debye length is given in CGS units by 

(23)

with the ionic strength Î = 2–
1 Σ

i
cizi

2, the summation running over all ionic species i of concentrations ci
in mol.L–1. 

Diffusion coefficients
The MOZ theory only provides structural properties at equilibrium. The translational and rotational dif-
fusion coefficients Dt and Dr have to be derived from experiment. For instance, the self-diffusion coef-
ficients Dt can be measured by NMR pulsed magnetic field gradient (PMFG) techniques [14,18] or trac-
er methods. 

Dynamic behavior of the ion pair (CH3)4P+/ •ON(SO3)2
2– in D2O solution by 1H and 31P

NMR relaxation 

We have investigated [15–18] the relative dynamics of the paramagnetic nitrosodisulfonate anion
•ON(SO3)2

2– (NDS2–) with respect to the tetramethyl-phosphonium cation (CH3)4P+ (TMP+) in
dilute D2O solutions at 25 °C. We have measured the intermolecular longitudinal relaxation rates
Rln

e of the (CH3)4P+ protons and phosphorous nuclei, due to their magnetic coupling with the
•ON(SO3)2

2– electronic spins for several ionic strengths and resonance frequencies. In Fig. 4, the PMF
βwIS

FC of the TMP+/NDS2– pair is plotted for typical values of the screening parameter κdw and the relat-
ed theoretical dipolar relaxivities (1/Tidip

inter)/cS vs. κdw are compared with the measured values rln
e =

Rln
e /cS. For the three considered frequencies the agreement is quite satisfactory for the 1H nuclei. This

is a very encouraging result because there are no arbitrarily adjustable parameters in the theory. On the
other hand, for the 31P nuclei, the measured intermolecular relaxation process cannot be explained with-
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in our model for the relative distribution and motion of the pair TMP+/NDS2–, since the dipolar relax-
ivity can be 30% smaller. 

Does the difference between the experimental relaxivity of the 31P nuclei and its theoretical dipo-
lar counterpart come from some failure of the above liquid model (imprecise values of the geometrical
parameters, inaccuracy of the mean force potential, stochastic independence of the translational and
rotational ionic motions) or from the neglect of the relaxation mechanism due to the hyperfine scalar
coupling? To answer this question, in Fig. 5, we report the relative 1H and 31P experimental frequency
shifts vs. the free-radical concentrations together with the theoretical expression (20) of the dipolar
shift. For the protons, the perfect agreement between the experimental and theoretical values of the
shifts shows that there is no measurable hyperfine scalar coupling. On the other hand, it is easily seen
that the experimental relative shifts (18) for the 31P nuclei at 298 K are about 3 times larger than the
dipolar shifts calculated from eq. 20. This proves the existence of an important hyperfine coupling
between a 31P nucleus and a free-radical magnetic electron. From our theoretical expression (21), by
using a reasonable value λSb = 5, we determined a value c/b = –29 of the hyperfine coupling coefficient
through a mean square fit. For an average value of κdw = 0.5, typical of our solutions, we obtain, in first
approximation, A(r)—– = 1.0 × 106cS rad.s–1 or a(r)—– = –0.67cS rad.s–1. These values are relevant because
they are independent of the shape of the hyperfine coupling a(r) = (c/r)exp(–λsr) and consequently of
the λsb value. We also checked that when varying λsb between 3 and 10, the values of c/b are modified
without altering the quality of the ∆ν/ν0 fit. 

The 31P hyperfine coupling function (a)r just determined in the framework of the diffusion model
for spherical ions provides a negligible scalar hyperfine contribution 1/Tls

inter to the expression (6) of
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Fig. 4 (a) Influence of the screening parameter κdw = 0, 0.1, 0.66 on the (CH3)4P+/ •ON(SO3)2
2– potential of mean

force βwIS
FC in water. (b) The 1H relaxivity rl of the (CH3)4P+ ion (experimental values at the 1H resonance

frequencies of 20, 80, and 400 MHz are shown by triangledowns, circles, and squares, respectively); the scaled 31P

relaxivity (γH—γI )2r1of the (CH3)4P+ ion, where γ1 is the gyromagnetic ratio of the 31P nuclear spin I (experimental

values at the 31P resonance frequencies of 101, 162 MHz are shown by diamonds and squares, respectively). 



1/Tl
inter at our rather high working magnetic fields B0. Indeed, ωSτ >> 1 and js(ωS), which decreases as

ωS increases, is very small, so that 1/Tls
inter ∝ js(ωS) can be neglected. The discrepancy observed for the

31P relaxation rates is probably due to the strongly anisotropic collisional process between the attrac-
tive ions of the pair. The TMP+ cation has tetrahedral symmetry, and the NDS2– is approximately ellip-
soidal in shape. Then, shorter minimal distances of approach between the 31P nucleus and the free elec-
tron will be favored with respect to the hard-sphere model for some relative orientations of the ions. 

For B0 ≥ 4T, the hyperfine coupling has a negligible effect on the longitudinal relaxation rate
1/T1

inter , which is governed by the magnetic dipolar intermolecular coupling. On the other hand, it
significantly contributes to the transverse relaxation rate 1/T2

inter, because 1/T2s
inter depends on the

notable value js(ωS = 0) of the scalar spectral density according to eq. 17. Both the T1 and T2 relaxation
times of the 31P nuclei were measured at ν1 = 81 MHz (B0 = 4.7 T) for various solutions of small and
moderate ionic strengths. The ratio T1

inter/T2
inter was found to have experimental values ~–1.53 in excel-

lent agreement with their theoretical counterparts, provided that the hyperfine contribution is taken into
account. On the other hand, for a purely dipolar relaxation mechanism, T1dip

inter/T2dip
inter = 1.16. This shows

the overall validity of our theory for describing the dynamical properties of water with semi-dilute
attractive ions. Accurate theoretical predictions are possible for T1

inter/T2
inter because this ratio is much

less sensitive than 1/T1
inter and 1/T2

inter to the inaccuracy of the model of the TMP+/NDS2– collision
dynamics. 

Intermolecular relaxation dispersion of the (CH3)4N+ protons in Gd3+ heavy water
solutions

Because paramagnetic gadolinium Gd3+ ions carry “pure” electronic spins of exceptionally high
value S = 7/2, their clinically approved chelates are placed right in the middle of a revolutionary
development in medical diagnostics [21]. Indeed, they enhance the relaxation rates of the protons of
the surrounding water, so that they can increase the relaxation contrast between normal and diseased
tissue in medical MRI. At the MRI fields B0 ≈ 1T, the nuclear relaxation induced by Gd3+ complex-
es depends on the longitudinal relaxation time Tle of their electronic spins, which is too short for
direct measurement and still needs an improved theoretical description. In order to help to charac-
terize the efficiency of Gd3+ contrast agents, we present a typical NMRD study of the protons of
tetramethylammonium (CH3)4N+ (TMA+) probe ions in D2O solutions of Gd(D2O)8

3+ octoaqua ions
at 298 K. 
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Fig. 5 Comparison between the observed relative frequency shifts of the 1H and 31P nuclei of the (CH3)4P+ ion and
the theoretical dipolar contributions to these shifts. 



As a first step, we have performed relaxation measurements at 400 MHz (B0 = 9.4T) [22] and
above to assess the TMA+/Gd(D2O)8

3+ relative dynamics. At these high NMR frequencies, Tle ≥ 10–8 s
for Gd3+. As Tle is much longer than the translational correlation time τ ≈ 3 × 10–10 s of the interionic
motion, the longitudinal electronic relaxation is slow with respect to the ion–ion dynamics and its
effects on the nuclear relaxation are negligible. We can use the Solomon relaxation expression (7) to
calculate R1S = 1/T1dip

inter. In Fig. 6, various models for the PMF of the interacting ions are displayed. We
also report the values of this dipolar relaxation rate for various Gd3+ concentrations in Gd(ClO4)3 solu-
tions that only contain the noncomplexing ClO4

– anions. The theoretical values, represented by a con-
tinuous line, are in excellent agreement with the experimental rates shown as white squares. The
increasing slopes of the theoretical and experimental rates with cS originate from the Debye–Hückel
screening of the Coulomb repulsion between the studied ions. It should be pointed out that no adjustable
parameter has been used in the theoretical model. We have also calculated the rates R1S of a simple
model of solution where the interacting ions are considered as neutral hard spheres in nonpolar water,
also made of discrete hard spheres. The predicted values for the neutral spheres, represented by a dot-
ted line, are more than twice as large as the experimental ones. This is a striking proof of the impor-
tance of Coulomb repulsion on the dynamical behavior of the ion pair.

For various concentrations of gadolinium nitrate Gd(NO3)3 we have also investigated the relax-
ation rates R1S(NO3

–) of the TMA+ protons. The experimental results are shown as white circles in
Fig. 6, where they can be compared to the values R1S(ClO4

–), which have been measured in the
Gd(ClO4)3 solutions and previously discussed. The experimental rates in the presence of the NO3

– ions
are significantly larger than the corresponding values relative to the ClO4

– solutions, especially as the
Gd3+ concentration increases. This can be explained as follows. As the Gd(NO3)3 concentration
increases, a negative complexing NO3

– counterion can replace one or two water molecules of the first
hydration shell of a rising percentage of the Gd(D2O)8

3+ ions. The newly formed species
Gd(NO3)(D2O)p

2+ carry smaller electric charges +2, instead of +3 for the Gd(D2O)8
3+ ions. They are less

repelled by a TMA+ cation. The Gd3+ paramagnetic centers are near the TMA+ more often, which
yields an increase of the dipolar coupling that induces the relaxation.
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Fig. 6 (a) Various models for the (CH3)4N+/(Gd3+ aqua complex) potential of mean force βw in water. (b)
Comparison between the predicted intermolecular relaxation rates RlS and the experimental values in the case of
non complexing ClO4

– anions and complexing NO3
– anions in D2O. 



In order to study the complexation of the Gd3+ ions by the nitrates, it is useful to compute
R1S(NO3

–) for a simple model, in which all the purely hydrated ions Gd(D2O)8
3+ are replaced by

Gd(NO3)(D2O)p
2+ complexes, which are assumed to have the same spherical shape, diameter and self-

diffusion constant, but which carry charges +2 instead of +3. Under these hypotheses, the calculated
rate R1S(NO3

–) of the TMA+ protons due to the Gd(NO3)(D2O)p
2+ cations is represented by the dashed

curve in Fig 6b. It is slightly larger than the experimental rate R1S(NO3
–)exp at a given Gd3+ concentra-

tion. This can be interpreted by a chemical equilibrium

(24)

between the two gadolinium complexes, with a reasonable apparent equilibrium constant Kapp = 
11.8 L.mol–1. The same model of interionic motion could then successfully explain the measured relax-
ation rates R1S at 400, 600, and 800 MHz in two D2O solutions containing 0.1 M and 0.5 M of
(CH3)4N+Cl– and ~–3 × 10–3 M of Gd(D2O)8

3+. This confirms the negligible role of the electronic relax-
ation of the Gd3+ ion at these high NMR frequencies. 

The second step of the NMRD probe solute method is a relaxation study, in which the field B0
takes moderate values such as those used in MRI. Then, Rln

e = RlS is sensitive to the electronic relax-
ation. For 0.23T ≤ B0 ≤ 18.5T (10 MHz ≤ ν1 ≤ 800 MHz), we measured [23] the rates Rln

e = RlS of the
TMA+ protons in a dilute 0.1 M solution of TMA+ in D2O containing 3.08 × 10–3 M of Gd3+. As the
field B0 → 0, ωIτ decreases, whereas τ/Tle increases, so that τ/Tle cannot be neglected with respect to
ωIτ. Thus, the NMRD of protons requires a detailed knowledge of the electronic relaxation of the Gd3+

ion. For this purpose, we have undertaken a careful analysis [24] of the Gd(D2O)8
3+ EPR spectra meas-

ured by the Merbach group at various temperatures and fields. We have shown that, contrary to the usual
assumption, the electronic relaxation is not only due to the effects of the transient zero-field splitting,
but is also strongly influenced by the effects of the mean crystal field, which is static in the molecular
frame. The static crystal field is modulated by the random Brownian rotation of the complex of rota-
tional diffusion constant DR. This motion is characterized by a rotational correlation time τR = 1/DR =
1.95 × 10–10s at T = 298 K. Our model allowed us to deduce the field dependence of the electronic
relaxation functions. The longitudinal electronic relaxation function kzz(t) is well approximated using a
single relaxation time, whereas the transverse electronic relaxation function is a superposition of four
decreasing exponentials. 

It is quite reasonable to suppose that the spatial molecular diffusion and the motion of the elec-
tronic spin are uncorrelated. Then, the correlation function Czz(t), which is relevant to the nucleus-elec-
tron dipole–dipole interaction, is simply the product 

(25)

of the dipolar correlation function g2(t) defined by eq. 10 and of the longitudinal electronic relaxation
function kzz(t) = (1/3)S(S + 1)exp(–|t|/Tle). We are now in a position to give the general expression for
the theoretical intermolecular dipolar nuclear-electron relaxation rate Rln

e due to the fluctuating elec-
tronic spins. Define the spectral density j2(ω,1/Tle) by 

(26)

The new Solomon–Bloembergen (SB) type expression of Rln
e , which should be used instead of

eq. 7, reads after replacing γS by –gSµB/h–

(27)

where the four spectral densities at the electronic frequency ωS are dropped in this brief report, since
they play a minor role for B0 ≥ 0.5T. 
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In Fig. 7, the experimental NMRD data are compared to the theoretical predictions of three dif-
ferent models. Model i incorporates the influence of the Coulomb repulsion of the PMF given by eq. 22
on the ion–ion relative diffusion. Model ii accounts for the repulsive ion–ion PMF as in model i, but
neglects all of the effects of the electronic relaxation by using the Solomon eq. 7. Finally, model iii
describes the ion–ion relative diffusion as that of neutral hard spheres in a viscous continuum and
assumes that the spins are located at the ion centers. 

With the most realistic model i, the overall agreement is good for all of the investigated fields,
and in particular, the position of the maximum at B0 ~– 2.2T is well predicted. The theoretical predic-
tions are excellent at high fields >4T, where the electronic relaxation effects vanish so that the
Solomon eq. 3 applies. This justifies the model of interionic dynamics. The theoretical values are slight-
ly lower than the experimental data at low fields, but the discrepancy never exceeds ~15%. This is quite
remarkable because there are no adjustable parameters and because the NMR experimental accuracy is
of the order of 5%. 

To our knowledge, this is the first time that an electronic relaxation model of the Gd3+ ion, with
convenient parameters for the underlying physical processes, is able to interpret the EPR line widths at
various temperatures and fields and that the same set of parameters accounts, in a reasonably accurate
way, for the effect of the fast electronic relaxation on the proton magnetic relaxation dispersion due to
the translational encounters of the cation/Gd3+ pairs.

For completeness, now consider the Rln
e = RlS predictions of models ii and iii, also represented in

Fig. 7. The smaller results of model i (continuous curve) with respect to the values of model ii (long-
dashed curve) display the influence of the electronic relaxation on the NMRD profile for B0 < 4T. At
B0 = 0.5T which is the MRI field of reference, the TMA+ proton relaxation rate Rln

e is decreased by ~50%
because of the short value of Tle with respect to the translational correlation time τ. The smaller values
of model i (and of model ii) with respect to the predictions of model iii (dashed line) indicate the marked
influence of the Coulomb repulsion on the spatial relative dynamics of the TMA+/Gd(D2O)8

3+ ion pair.
This electrostatic repulsion is in no way negligible, leading to a reduction of Rln

e by a factor of ≈2. 
Here, we have used an independent EPR study to infer the longitudinal electronic relaxation time

Tle needed to interpret the NMRD profile. The reverse procedure is also useful. NMRD experiments,
using probe solutes of well-known spatial dynamics with respect to a Gd3+ complex, can be combined
with the new Solomon–Bloembergen equation (27) to provide an indirect estimate of Tle in this com-
plex. In our case, the values of Tle through this procedure are in good agreement with those derived from
the analysis of the EPR data. 
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Fig. 7 1H NMRD profile for the (CH3)4N+/Gd(D2O)8
3+ ion pair in D2O. The predictions of models (i), (ii), and (iii)

are represented by continuous, long-dashed, and dashed lines, respectively.



DISCUSSION

Integral equation (IE) theories of the statistical mechanics of liquids, such as the MOZ-HNC approxi-
mation and its derivatives applied in this article, only yield approximate properties at equilibrium.
However, the examples given, ranging from pure aprotic solvents to electrolyte solutions of dissociated
ions, demonstrate their accuracy and even their ability to predict dynamical properties in the framework
of Brownian diffusion. Moreover, they deliver liquid properties without any statistical bias [25] or noise
and within computer times that can be orders of magnitude shorter than those needed by simulations.
For instance, computing a whole intermolecular NMRD profile in a paramagnetic aqueous solution of
several different spherical ions requires only a minute on a modern workstation! Therefore, they enable
us to determine the unknown parameters of interaction models through the fitting of theoretical results
to their experimental counterparts. 

IE theories have also been successful in many other areas, including the solvation thermodynam-
ics in electrolyte solutions [1,26–28], the description of liquid–gas phase transitions [29], transport
properties of ions [30], colloid systems [31], or chiral fluids [32] using a diagrammatically correct
site–site method [33]. In view of these successes, continuous effort has been devoted to remedy the
weaknesses of the IE theories. On the one hand, to improve upon the HNC approximation, more accu-
rate bridge functions BAB(12) have been proposed for systems of neutral hard spheres [34], of spheri-
cal ions [35], and for many fluids of anisotropic molecules [36]. An alternative route to deal with liq-
uids of associating molecules such as water, in which the bridge term plays a notable role [37], was pio-
neered by Wertheim [38,39], who suggested to treat the excluded volume effects on association by
replacing the usual OZ theory by a new formalism. For instance, this Wertheim OZ (WOZ) theory
already led to encouraging results for electrolyte solutions with strong anion-cation association [40] and
for H-bonded hydrogen fluoride [41]. On the other hand, the IE theories, which initially were developed
to deal with molecules without internal degrees of freedom, have been extended to account for the
important molecular polarizability, either by employing effective partial charges and electric dipoles
[3,42] or by extending the conventional OZ approach to a more general IE formalism [43]. 

About 50 years ago, Eugene Wigner stated [44]: “With statistical mechanics, we can calculate
(almost) nothing—exactly”. The theory of intermolecular NMRD in paramagnetic solutions [45], which
combines classical theory of the liquid state and quantum theory of irreversible processes, is clearly a
domain of chemical thermodynamics where this pessimistic comment is no longer valid. Until now, the
application of IE theories to solutions in nonaqueous solvents has been rather restricted. Now, very
numerous studies, including systematic careful experiments and physical models, have already been
published on these systems by Hertz et al. [13,14,46] and Barthel et al. [1]. It will certainly be reward-
ing to revisit this considerable work in the light of the recent development of liquid-state theory and,
when necessary, to complete it by additional studies using the very promising high-resolution NMRD
technique at low and intermediate fields [47]. 
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