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Abstract: Quantitative structure–activity relationships (QSARs) are developed for two sepa-
rate families of sweet-tasting molecules for which sweetness values relative to sucrose (RS)
have been measured. For these two families of sucrose and guanidine derivatives, the mole-
cules were divided into training and test sets. Linear multiple regression equations have been
generated to relate separately log(RS) to two types of parameters, namely molecular descrip-
tors and energies derived via molecular field analysis (MFA). The parameters used in the
development of linear multiple regression equations were selected by the genetic algorithm.
The equations obtained show high predictive quality, which is confirmed by statistical param-
eters obtained with the test sets.

The data for these two families were then combined with data from two other families
previously studied, namely the sulfamates and isovanillates, to make a set of 149 compounds.
These molecules were also studied by QSAR methods. The generated equations show
remarkable predictive power, and the quality of the results suggest that the mechanism of
sweet taste receptor is similar and, therefore, that there could well be only one receptor site
for sweet taste, particularly for the four sweet taste families considered in this work.

INTRODUCTION

Sweet taste transduction is thought to arise from the interaction of a molecule with a G protein-coupled
taste receptor at the taste receptor cells, which generate a sensation of pleasant sweetness. Recent stud-
ies have identified the T1R3 receptor as a probable candidate for the sweet taste receptor [1–6]. While
the residue sequence is published, the detailed structure has not yet been determined. When that struc-
ture is available, then it will be possible to investigate how sweet-tasting molecules interact with the
active site and hence establish a direct correlation with relative sweetness (RS). In the meantime, it is
possible to investigate sweet taste by studying molecules with particular taste properties and establish-
ing the molecular features that are responsible for taste.

Previous studies on structure–sweet taste relationships, recently reviewed [7], have been charac-
terized by the glucophore models, starting at the AH-B theory of Shallenberger and Acree [8] and the
AH, B, X theory of Kier [9] and moving on to the multipoint attachment theory of Tinti and Nofre
[10,11]. These models describe the sweetness of a molecule as arising from functional groups with spe-
cific physicochemical properties and, in particular, geometric arrangements. These models, though
qualitative or semiquantitative, have been widely used over the last decade to explain the taste charac-
teristics of large numbers of sweet-tasting compounds. 
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By contrast, we have concentrated on quantitative studies of sweet taste. Here, we detail our
development of quantitative structure–activity relationships (QSARs) for sweet-tasting molecules in
which we analyze molecules with known RS values. QSARs can be established most readily with fam-
ilies of molecules, and we have studied several series with known sweetness value. In previous work,
we have studied 21 sulfamates that have RS values of 0.6 to 70.5 [12] and 41 isovanillates with RS val-
ues between 1 to 10 000 [13]. For the sulfamates, we used principal component analysis to distinguish
between molecules that tasted sweet and bitter, and also developed linear multiple regression equations
with good predictive power. For the isovanillates, we also developed similar high-quality equations
[13].

In this paper, we detail QSARs for 40 sucrose derivatives with RS values of 0.2 to 7500 and 47
guanidine molecules with RS values of 350 to 205 000. We also show combined QSARs for sweet taste
using data from 149 molecules in all four families of molecules.

EXPERIMENTAL

An equivalent methodology was used for the sucrose and guanidine derivatives and the combined set of
molecules, and this is equivalent to that detailed in our published work with the isovanillates [13]. For
each study, the molecules were divided into a training set to develop the QSAR, and a test set to vali-
date the QSAR. 

Two types of parameters were used separately in the calculations. Molecular descriptors were
derived from the 2-dimensional and 3-dimensional structures of the molecules. For the guanidine deriv-
atives, as previously for the sulfamates and isovanillates, the lowest energy conformations of each mol-
ecule were used for the generation of descriptors, and these were obtained by using the grid scan
method in Cerius2 [14]. However, for the sucrose derivatives, the conformations were generated fol-
lowing a different protocol. As is known from the crystal structures of sucrose and sucralose, their con-
formations are very different with respect to the glycosidic bridge torsion angles which have been deter-
mined by X-ray crystallography as 108.2, –45.1° in sucrose [15] and 91.4, –162.2° in sucralose [16].
The differences occur because in sucrose there are O(2)…O(1′) and O(5)…O(6′) intramolecular hydro-
gen bonds between the two rings, while in sucralose these hydrogen bonds cannot occur because of
hydroxide substitution, and, therefore, the O(2)…O(5′) hydrogen bond is found which requires a dif-
ferent conformation. However, it is debatable whether these hydrogen bonds, and therefore the confor-
mation, would persist in solution and indeed what conformation would exist when the molecules inter-
act with the receptor site. Molecular mechanics calculations suggest that the conformation could readily
change to maximize the interaction in a receptor site [17]. We considered three different choices of con-
formation, using the sucrose bridge conformation or the sucralose bridge conformation or obtaining and
then using the lowest energy conformation for each molecule. Taking into account that it has been estab-
lished by X-ray crystallography that drugs do not often take up their lowest energy conformation in their
receptor sites, we rejected the third option of using the lowest energy conformation of each molecule.
Given that the interaction of the molecules with the receptor site is likely to be mediated with solvent
water, a fact that has implications for changing the conformational preferences of the derivatives, there
seems no obvious reason to choose one conformation or the other. We, therefore, selected the first
option and for each derivative constrained the torsion angles in the glycosidic bridge to 108.2 and
–45.1° the values found in sucrose and carried out a grid scan analysis on the remaining rotatable bonds
in the molecule to find the lowest energy conformation.

After establishing the conformations of the molecules, over 100 such parameters were obtained,
which could be categorized as conformational, electronic constants, receptor, topological, information-
content, molecular shape analysis, spatial, structural, and thermodynamic descriptors. A second set of
parameters was then obtained via molecular field analysis (MFA). First, the molecules in each group
were overlapped using common structural features. This is straightforward for the sucrose and guani-
dine descriptors because they share common structural features, less so for the combined set of mole-
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cules. The overlapped molecules were then placed within a box of appropriate size (vida supra). The
fragments H+, CH3, CH3

–, and CH3
+ were used as probes and positioned at 2Å intervals within the box.

The energies of interaction between the probes and the molecules were then calculated at each point to
give, for example, for the 149 compounds in the 4 families, 990 points for each probe and therefore
3960 interaction energies for each molecule. The 10 % interaction energies with the highest variance
were then selected to give 396 points for each probe.

With both types of parameters, we next derived multiple linear regression equations of the type
log(RS) = a0 + a1p1 + a2p2 + a3p3 … anpn, where ai are constants and pi are the parameters. The genetic
algorithm was then used to select the most appropriate parameters to use in the equation using the
methodology previously described [13]. Both the genetic factor algorithm (GFA) [18] and genetic par-
tial least squares (GPLS) methods were used within the QSAR modules of Cerius2 [14]. In the GFA,
the best equations are selected via Friedman’s lack of fit (LOF) factor, which takes into account the
number of terms used in the equation and is not biased, as are other indicators toward large numbers of
parameters. Other statistical measures such as r2, r2(CV) the cross-validation r2 value obtained via the
leave-one-out method, and the predicted residual sum of squares (PRESS) value were used to validate
the equation and assess its predictive ability. 

RESULTS AND DISCUSSION

Sucrose derivatives 

RS values were available in the literature for 40 sucrose derivatives [19], which are shown in Fig. 1.
Over 20 years ago, it was discovered that the replacement of hydroxide groups by halides led to
increased sweetness. Of particular interest is sucralose, 4,1′,6′-trichloro-4,1′,6′-trideoxygalactosu-
crose, which has an RS value of 650. This compound is currently used as a high-intensity sweetener
in many countries such as Australia and Canada and is being considered as a food ingredient in the EC
[20,21]. However, there are many other such compounds with RS values of up to 7500 as shown in
Fig. 1. For the QSAR study, the molecules were divided into a training set of 30 and a test set of 10
molecules. The molecules in the test set were chosen to provide a varied range of RS values and sub-
stituents. Molecular descriptors were then calculated. For the MFA, the molecules were overlapped
(Fig. 2) using the O(5)-C(1)-O(1)-C(2′)-O(5′) linkage and placed within a box of size 6*6*6Å3. 

Multiple linear regression equations were then developed using both molecular descriptors and
energy values obtained from MFA. Equations were generated using different numbers of descriptors.
The best equations, assessed via the statistical parameters listed above, using both GFA and GPLS
methods are reported below. The descriptors abbreviated in the equations are given in full in the
Appendix. Plots of calculated log(RS) against experimental log(RS) values for both the training and test
sets from the GFA methods are given in Figs. 3 and 4. 

Log(RS) = –2.708 – 0.016*MW + 0.500*CHI-V-1 – 2.352*ROG + 0.181*IAC-Total –
0.053*Dipole-Y – 0.922*Kappa-2 [GFA, r2 = 0.902, LOF = 0.270, r2(CV) = 0.849,
PRESS(training) = 4.725, PRESS(test) = 5.453] (1)

Log(RS) = –3.528 – 0.355*RotlBond + 0.157*IAC-Total – 0.072*Dipole-Y – 0.032*JURS-
WPSA-1 + 0.032*JURS-PPSA-3 [GPLS, r2 = 0.892, r2(CV) = 0.809, PRESS(training) = 5.953,
PRESS(test) = 5.611] (2)

Log(RS) = –0.084 + 0.045*H+/406 + 0.056*H+/181 + 0.065*CH3/243 + 0.037*H+/269 [GFA,
r2 = 0.904, LOF = 0.186, r2(CV) = 0.860, PRESS(training) = 4.378, PRESS(test) = 11.353] (3) 

Log(RS) = –0.530 + 0.040*CH3
+/150 + 0.030*H+/181 + 0.025*CH3

–/182 + 0.023*H+/269 +
0.033*CH3/243 + 0.015*H+/180 + 0.029*CH3

+/356 – 0.023*CH3
–/181 [GPLS, r2 = 0.942,

r2(CV) = 0.893, PRESS(training) = 3.345, PRESS(test) = 8.134] (4)
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Fig. 1 List of the sucrose derivatives used in this work together with their RS values. Molecules in the test set are
marked *.

Fig. 2 Overlapping of the sucrose derivatives as used in the MFA. The positions of the probes used in eq. 3 are
identified.



Both sets of parameters have led to equations with good predictive quality with r2 values in excess
of 0.90 and r2(CV) values in excess of 0.85. Figures 2 and 3 show that there is a good agreement for
the test set, also indicating that the equations have good predictive power. The molecular descriptors in
the equations include a wide range of parameters including electronic (Dipole-Y), information content
(IAC-Total), molecular weight, and JURS descriptors, which represent partial charges mapped on sur-
face area. The terms used in MFA equations provide important information concerning how the mole-
cules interact with the receptor site. Indeed, for the sucrose derivatives, it is particularly noticeable from
Fig. 2 that there are two H+ probes located close to the pyranose ring at positions O(6), O(4), and O(1′),
suggesting that these are the crucial hydroxides to be substituted by halogens for enhanced sweetness.

The other probes are to be found around the furanose ring at positions close to O(1′). It is inter-
esting that no probes are located close to the 3′ and 4′ positions, indicating that these positions are rel-
atively unimportant for sweet taste.

Guanidine derivatives

The guanidine derivatives show a very wide range of RS values ranging up to 205 000 [16] (Fig. 5). The
molecules were divided into a training set of 39 and a test set of 8. Molecules in the test set were cho-
sen to provide a varied range of RS values and substituents. Molecular descriptors were then calculated.
The molecules were overlapped using the Ph-N=C(N)N moiety (Fig. 6), and MFA parameters were cal-
culated using a 7*7*7Å3 grid. 

The best equations obtained from the linear multiple regression are shown below.

Log(RS) = 3.248 + 0.007*Wiener + 0.898*CHI-V-3-C – 0.259*Rotlbonds – 0.384*SC3–C +
4.081*BIC – 0.002*V-Dist-MAG [GFA, r2 = 0.705, LOF = 0.244, r2(CV) = 0.534, 
PRESS(training) = 7.209, PRESS(test) = 1.690] (5)

Log(RS) = 8.820 – 0.017*E-ADJ-MAG + 0.004*Wiener – 0.256*Rotlbonds + 1.133*Rad. Of
Gyration – 2.018*JX – 1.081*CIC [GPLS, r2 = 0.706, r2(CV) = 0.519, PRESS(training) = 7.435,
PRESS(test) = 1.819] (6)

Log(RS) = 3.498 – 0.029*CH3
–/269 + 0.030*CH3

–/352 + 0.050*CH3/205 + 0.067*H+/167 –
0.030*H+/147 – 0.016*H+/156 [GFA, r2 = 0.758, LOF = 0.200, r2(CV) = 0.631, PRESS(training)
= 5.713, PRESS(test) = 8.883] (7)

Log(RS) = 3.672 – 0.026*CH3/223 + 0.025*CH3
+/177 + 0.041*H+/202 + 0.030 H+/324 +

0.023*CH3/371 + 0.018*H+/167 [GPLS, r2 = 0.778, r2(CV) = 0.506, PRESS(training) = 7.637,
PRESS(test) = 5.439] (8)
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Figs. 3 and 4 Plot of observed log(RS) value against calculated log(RS) value for the 40 sucrose derivatives using
eqs. 1 and 3, respectively. Data for molecules in the training set are shown as filled circles, test set as open
diamonds.



The observed and calculated values of log(RS) for the training and test sets are shown in Figs. 7
and 8 for eqs. 5 and 7 which were obtained using the GFA method. 

The statistical measures are not as high as for the sucrose derivatives with r2 values around 0.70,
while r2(CV) values are between 0.50 and 0.60. However, it is interesting that the PRESS(test) values
using molecular descriptors are particularly good, showing that the equations have good predictive qual-
ity. It is noteworthy that the majority of descriptors selected for the equations are 2-D connectivity
terms. By default, this may suggest that the 3-D conformations are particularly flexible and those found
in the receptor site may not be those used for the MFA. Supporting evidence for this view is provided
by the high PRESS(test) values observed in eqs. 7 and 8 and illustrated in Fig. 8, which show that the
MFA equations do not have good predictive quality. In the MFA equations, it can be observed from
Fig. 6 that there are no probe positions located around the common features of the guanidines. This is
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Fig. 5 List of the guanidine derivatives used in this work together with their RS values. Molecules in the test set
are marked *.



to be expected, as these common features are clearly not responsible for the variations in RS values,
although of course they are necessary for the generic sweet taste in the guanidine family. The probe
positions are located around the R groups (Fig. 5) and illustrate how variations in R affect the sweet
taste.

Four families of sweetener molecules

We next considered whether it was possible to generate a QSAR for all sweet-tasting molecules.
Clearly, the answer could only be yes, if there was one mode of action in one sweet taste receptor. We
derived QSARs for molecules in 4 families, the sucrose and guanidine derivatives discussed above
together with sulfamate and isovanillate families. The molecules used in these latter 2 families, and their
RS values are previously published [12,13]. There were 149 molecules in all, and these were divided
into a training set of 120 molecules and a test set of 29. The test set was distributed in proportion
throughout the 4 families, and molecules were selected to provide a varied range of RS values and of
derivatives. There is a significant problem in applying MFA to these 149 molecules, namely, how to
overlap the molecules. As we have shown, it was relatively straightforward for the 4 families separately,
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Fig. 6 Overlapping of selected guanidine derivatives as used in the MFA. Not all the guanidine derivatives are
shown for reasons of clarity, but the overlapping groups are clearly indicated. The positions of the probes used in
eq. 7 are identified.

Figs. 7 and 8 Plot of observed log(RS) value against calculated log(RS) value for the 47 guanidine derivatives
using eqs. 5 and 7, respectively. Data for molecules in the training set are shown as filled circles, test set as open
diamonds.



but much more difficult for the 4 families together. It was decided to overlap the families using the
Tinti–Nofre sweetness model [22] Each family was overlapped with its pharmacophore coincident with
the AH, B, and G sites of the model to obtain the overlap shown in Fig. 9. A box of size 10*9*8Å3 was
used. The equations obtained are shown below, and the agreement between observed and calculated
log(RS) values are illustrated in Figs. 10 and 11.

Log(RS) = –3.766 – 0.002*Wiener + 0.390*AlogP + 0.537*CHI-O – 0.936*CHI-3-C +
0.031*Dipole-Y [GFA, r2 = 0.833, LOF = 0.376, r2(CV) = 0.817, PRESS(training) = 41.497,
PRESS(test) = 11.236] (9)

Log(RS) = –4.526 – 0.002*Wiener – 0.176*SC-3-C + 0.314*SC-0 + 0.240*CHI-V-0 +
0.290*AlogP + 0.034*Dipole-Y [GPLS, r2 = 0.840, r2(CV) = 0.823, PRESS(training) = 40.148,
PRESS(test) = 9.186] (10)

Log(RS) = 3.721 – 0.021*CH3
+/730 + 0.085*H+/282 + 0.271*CH3

+/531 + 0.022*CH3
–/573 –

0.339*CH3
+/426 – 0.038*CH3

–/778 [GFA, r2 = 0.830, LOF = 0.396, r2(CV) = 0.808,
PRESS(training) = 43.605, PRESS(test) = 27.279] (11)

Log(RS) = –1.071 + 0.078*CH3
+/265 + 0.100*CH3

+/534 – 0.028*CH3
+/730 + 0.020*CH3

–/573
+ 0.118*CH3/815 [GPLS, r2 = 0.819, r2(CV) = 0.800, PRESS(training) = 45.449, PRESS(test) =
28.577] (12)
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Fig. 9 Overlap of the 149 molecules used in the study of the 4 sweet-tasting families.

Figs. 10 and 11 Plot of observed log(RS) value against calculated log(RS) value for the 149 sweet-tasting
molecules using eqs. 9 and 11, respectively. Data for molecules in the training set are shown as filled circles, test
set as open diamonds. 



While the statistical tests show that both sets of parameters have led to equations with good pre-
dictive quality, the values using the molecular descriptors give higher statistical measures. It is inter-
esting that the majority of terms used in the equations derive from 2-D connectivity and molecular
graph terms, although AlogP and Dipole-Y are also found indicating the importance of the charge dis-
tribution in the molecules. From Fig. 11, it can be concluded that the equations developed via the MFA
do not show much predictive quality. The RS values of a few of the test set molecules are particularly
badly predicted. This may well indicate that the method that was used for the overlap of the molecules
was unsatisfactory. However, in the absence of knowledge of the structure of the receptor, it is difficult
to decide upon a better method. It is interesting, however, to note that studies using the pseudo-recep-
tor, where the methodology allows for the minor realignment of the overlapped molecules, does pro-
vide activity relationships with better predictive quality [23]. 

It can, of course, be argued that we should have incorporated a wide range of sweet-tasting mol-
ecules in our study rather than limiting ourselves to 4 families, and this indeed is work that we are plan-
ning to carry out in the near future. However, even so, the results of calculations using molecular
descriptors on 149 molecules in four different families are very encouraging. In particular, the high pre-
dictive quality of this equation is indicated by the statistical values and indeed by the values predicted
for the test set. This shows that this equation or a variation thereof may well be able to predict the rel-
ative sweetness of a wide range of sweet compounds, not just those in the 4 families. The success of
this equation in explaining the sweet taste response of 4 families may well confirm the view that there
is indeed just one taste receptor that acts in a comparable manner for the majority of sweet-tasting mol-
ecules.
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Fig. 12 Overlap of the 149 molecules used in the study of the 4 sweet-tasting families. Not all the molecules are
shown for reasons of clarity but the overlapping groups are clearly indicated. The positions of the probes used in
eq. 11 are identified.



APPENDIX

A listing of descriptors used in the equations reported in this work [24] is given below.

MW: molecular weight.
Rotlbonds: the number of rotatable bonds in the molecule. 
DIPOLE: the Dipole moment. DIPOLE-Y is the dipole in the Y direction. 

Kier and Hall CHI molecular connectivity indices are numerical indices that represent structure via
chemical graph theory with emphasis on the molecular skeleton. Two types of CHI indices are used
here; CHI that is dependent just on the connectivity and CHI-V that takes into account the atom type
[25,26].
Kier and Hall subgraph count index (SC): This is the number of subgraphs of a given type and order.
SC-3_C counts the number of clusters.
Kier’s shape indices [jn (n = 1, 2, 3)]: These indices compare the molecular graph with “minimal” and
“maximal” graphs where the meaning of “minimal” and “maximal” depends on the order n [25,26].
Kappa-2 indicates the degree of linearity, or star-shape, of the bonding pattern.

Wiener index (W) is the sum of the chemical bonds existing between all pairs of heavy atoms in the
molecule [27].

IAC-Mean, IAC-Total: Information of atomic composition index. The atoms in the molecule are par-
titioned into equivalence classes corresponding to their atomic numbers.

Information indices based on the distance and edge adjacency matrices. 
V_DIST_mag: Vertex distance/magnitude 
E_ADJ_mag: Edge adjacency/magnitude

Multigraph information content indices.
BIC: Bonding information content, number of bonds counting bond orders.
CIC: Complementary information content measures the deviation of IC from its maximum possible
value corresponding to the partition into classes containing one element each.

JURS descriptors are based on partial charges mapped on surface area. This set of descriptors com-
bines shape and electronic information to characterize the molecules. The descriptors are calculated by
mapping atomic partial charges on solvent accessible surface areas of individual atoms [28]. A total of
30 different descriptors are included in the set of which 2 were used in the equations, namely, JURS-
WPSA-1 and JURS-PPSA-3, which represent, respectively, surface-weighted charged partial surface
areas and atomic charge-weighted positive surface area. 

ROG: Radius of gyration (Å)

AlogP: LogP, the octanol/water partition coefficient is a molecular descriptor that can be used to relate
chemical structure to observed chemical behavior. LogP is related to the hydrophobic character of the
molecule describing effects such as the solvent behavior, polarizability, and partitioning through a cell
wall. It is calculated via an atom-based approach where each atom of the molecule is assigned to a par-
ticular class, with additive contributions to the total [29]. 
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