Total synthesis of (–)-clavukerin A*

Erich L. Grimm[‡], Joey-Lee Methot**, and Mohammed Shamji**

Merck Frosst Centre for Therapeutic Research, P.O. Box 1005, Pointe Claire-Dorval, Québec, H9R 4P8 Canada

Abstract: (-)-Clavukerin A has been synthesized via *intramolecular* Julia coupling and *intramolecular* sulfone ester cyclization starting from (+)-limonene oxide.

INTRODUCTION

(-)-Clavukerin A (1), a trinor-guaiane sesquiterpene, was isolated from the Okinawan soft coral *Clavularia koellikeri* (stolonifer) together with clavukerin C (2) by Kitagawa and coworkers [1]. The absolute stereochemistry was assigned as shown on the basis of chemical, physicochemical, and X-ray crystallographic analysis (Fig. 1).

Several syntheses of clavukerin A, including enantiocontrolled routes, have been reported recently [2].

Fig. 1 Structures of clavukerin A and clavukerin C.

RESULTS

In this communication, we describe the total synthesis of (–)-1 using our previously disclosed methodology for medium-size ring construction via *intramolecular* sulfone ester as well as sulfone aldehyde cyclization (*intramolecular* Julia coupling) [3].

Starting with readily available **3** [4], reduction of the aldehyde (NaBH₄, MeOH, 0 °C) and conversion of the alcohol to sulfone **4** [5] [PBr₃, Et₂O, 0 °C, then PhSO₂Na, dimethylformamide (DMF), 25 °C, 15 h] proceeded in excellent overall yield (85 %). Hydroboration of **4**—disiamylborane [6], tetrahydrofuran (THF), 25 °C, 2.5 h—followed by oxidative work-up gave a single alcohol, which, on treatment with methanesulfonyl chloride (MsCl, NEt₃, 0 °C, 1 h) and sodium iodide in acetone (65 °C, 16 h), furnished crystalline **5** [7] (92 % overall yield). The crucial relative stereochemistry of the newly created chiral center in **5** was proved by detailed nuclear Overhauser effect (NOE) studies on the more rigid bicyclic derivative **6**, obtained upon treatment of **5** with 1.1 equiv of LiHMDS in THF (Fig. 2) [8].

^{*}Pure Appl. Chem. **75**, 141–419 (2003). An issue of reviews and research papers based on lectures presented at the 23rd IUPAC International Symposium on the Chemistry of Natural Products, Florence, Italy, 28 July–2 August 2002 on the theme of natural products.

[‡]Corresponding author: E-mail: erich_grimm@merck.com

^{**}Undergraduate research participants

Fig. 2 Synthesis of cyclization precursor 7.

Introduction of the remaining two-carbon unit was easily accomplished by reacting **5** with the sodium salt of methyl malonate, initially at 0 °C for 1 h, followed by heating at 140 °C for 16 h to effect decarbalkoxylation. This one-pot sequence allowed the preparation of **7** [9] in 51 % yield without isolation of the malonate intermediate. Ring closure [10] was achieved by slow addition of 2.2 equiv LiHMDS (1.0 M in THF) to a solution of **7** in THF at 0 °C to give **8** [11] in 89 % isolated yield (Fig. 3). Reduction of **8** with sodium borohydride gave **9** [12] as a single diastereomer (93 % yield). Alternatively, **9** can be prepared as a single stereoisomer via intramolecular Julia condensation [13] of aldehyde **10** [14] with 1.7 equiv LiHMDS (1.0 M in THF, 0 °C, 39 % yield). The stereocontrolled outcome of the cyclization suggests a highly organized transition state **11** with kinetic sulfone deprotonation as we had observed previously in the total synthesis of heliannuol A [3]. Finally, β -hydroxy sul-

Fig. 3 Synthesis of (-)-clavukerin A.

fone **9** underwent Julia elimination by treatment with sodium-amalgam (MeOH, 0 °C, 3 h, 89 % yield) to give synthetic (–)-clavukerin A.

In summary, an *intramolecular* Julia condensation, as well as a sulfone ester cyclization, provides efficient methods for the stereocontrolled construction of the clavukerin nucleus.

ACKNOWLEDGMENT

We wish to thank Dr. Y. Aubin for NOE measurements.

REFERENCES AND NOTES

- M. Kobayashi, B. W. Son, M. Kido, Y. Kyogoku, I. Kitagawa. *Chem. Pharm. Bull.* 31, 2160–2163 (1983); M. Kobayashi, B. W. Son, Y. Kyogoku, I. Kitagawa. *Chem. Pharm. Bull.* 32, 1667–1670 (1984).
- (a) M. Asaoka, T. Kosaka, H. Itahana, H. Takei. *Chem. Lett.* 1295–1298 (1991); (b) S. K. Kim and C. S. Pak. *J. Org. Chem.* 56, 6829–6832 (1991); (c) I. Shimizu and T. Ishikawa. *Tetrahedron Lett.* 35, 1905–1908 (1994); (d) T. Honda, H. Ishige, H. Nagase. *J. Chem. Soc., Perkin Trans. 1* 3305–3310 (1994); (e) E. Lee and C. H. Yoon. *Tetrahedron Lett.* 37, 5929–5930 (1996); (f) J. C. Friese, S. Krause, H. J. Schäfer. *Tetrahedron Lett.* 43, 2683–2685 (2002).
- E. L. Grimm, S. Levac, L. A. Trimble. *Tetrahedron Lett.* 35, 6847–6850 (1994); E. L. Grimm, S. Levac, M. L. Coutu. *Tetrahedron Lett.* 35, 5369–5372 (1994).
- 4. J. Wolinsky, M. R. Slabaugh, T. Gibson. J. Org. Chem. 29, 3740–3742 (1964).
- 5. ({[(5*S*)-5-isopropenyl-2-methylcyclopent-1-en-1-yl]methyl} sulfonyl)benzene (**4**): colorless solid, melting point (mp) 95.5–98 °C; [α]_D + 152.0° (c 1.14, CHCl₃); ¹H NMR (400 MHz, acetone- d_6) δ 7.86 (d, 2H), 7.75 (t, 1H), 7.65 (t, 2H), 4.74 (s, 1H), 4.61 (s, 1H), 4.06 (d, 1H, J = 14.0 Hz), 3.56 (d, 1H, J = 14.0 Hz), 3.45–3.35 (m, 1H), 2.35–2.15 (m, 2H), 2.02–1.92 (m, 1H), 1.68–1.58 (m, 1H), 1.53 (s, 3H), 1.31 (s, 3H); ¹³C NMR (100 MHz, acetone- d_6) δ 147.80, 145.25, 140.41, 134.42, 130.00, 129.25, 125.32, 112.28, 56.17, 54.83, 38.00, 28.10, 19.00, 14.18; IR (KBr) ν 3000–2820, 1665, 1640, 1580, 1445, 1400, 1370, 1305, 1290, 1145, 1125, 1080 cm⁻¹; MS (Cl, CH₄) mass-to-charge ratio (m/z) 277 (M + H)⁺; anal. calculated for C₁₆H₂₀O₂S: C, 69.53; H, 7.29; S, 11.60; found: C, 69.55; H, 7.33; S, 11.34.
- 6. H. C. Brown and G. Zweifel. J. Am. Chem. Soc. 83, 1241–1246 (1961).
- 7. $[(\{(5S)-5-[(1R)-2-iodo-1-methylethyl]-2-methylcyclopent-1-en-1-yl\}methyl)$ sulfonyl]benzene (5): colorless solid, mp 84.5–85.5 °C, $[\alpha]_D$ + 66.7° (c 1.04, CHCl₃); 1H NMR (400 MHz, acetone- d_6) δ 7.87 (d, 2H), 7.74 (t, 1H), 7.65 (t, 2H), 4.16 (d, 1H, J = 14.3 Hz), 3.79 (d, 1H, J = 14.3 Hz), 3.11 (dd, 1H, J = 9.7, 3.1 Hz), 2.93 (dd, 1H, J = 10.7, 9.8 Hz), 2.95 (m, 1H), 2.30–2.08 (m, 3H), 1.88–1.73 (m, 1H), 1.62–1.52 (m, 1H), 1.27 (s, 3H), 1.06 (d, 3H, J = 6.8 Hz); 13 C NMR (100 MHz, acetone- d_6) δ 145.92, 140.18, 134.49, 130.02, 129.22, 125.10, 55.00, 53.25, 38.65, 37.82, 23.00, 19.59, 14.25, 11.35; IR (KBr) υ 2950–2850, 1660, 1580, 1450, 1445, 1400, 1370, 1310, 1300, 1230, 1180, 1140, 1130, 1080 cm⁻¹; MS (Cl, CH₄) m/z 405 (M + H)⁺; anal. calculated for C₁₆H₂₁I₀₂S: C, 47.53; H, 5.24; S, 7.93; found: C, 48.07; H, 5.23; S, 8.18.
- 8. Key NOEs were observed between 1H and 3H, 1H and 6CH₃, 2H and 4H, 4H and 5H.
- 9. Methyl(4*S*)-4-{(1*S*)-3-methyl-2-[(phenylsulfonyl)methyl]cyclopent-2-en-1-yl}pentanoate (7): oil, $[\alpha]_D$ + 37° (c 0.68, CHCl₃); ¹H NMR (400 MHz, acetone- d_6) δ 7.87 (d, 2H), 7.74 (t, 1H), 7.64 (t, 2H), 4.08 (d, 1H, J = 14.4 Hz), 3.92 (d, 1H, J = 14.4 Hz), 3.61 (s, 3H), 2.91–2.88, (m, 1H), 2.45–2.22 (m, 2H), 2.20–2.08 (m, 2H), 1.92–1.70 (m, 2H), 1.58–1.35 (m, 2H), 1.25 (s, 3H), 1.20–1.08 (m, 1H), 0.87 (d, 3H), J = 6.8 Hz); ¹³C NMR (100 MHz, acetone- d_6) δ 174.04, 144.27, 139.97, 133.93, 129.50, 128.76, 125.55, 54.21, 53.07, 51.08, 37.26, 32.47, 31.72, 25.33, 22.42, 17.65, 13.58; IR (neat) ν 2950, 1730, 1585, 1445, 1375, 1310, 1240, 1145, 1080 cm⁻¹; MS (CI,

- CH_4) m/z 351 (M + H)⁺; anal. calculated for $C_{16}H_{21}I0_2S$: C, 65.11; H, 7.48; S, 9.15; found: C, 65.37; H, 7.33; S, 8.76.
- For other recent examples of *intramolecular* condensations between esters and α-sulfonylcarbanions, see: J. C. Carretero and R. G. Arrayás. *J. Org. Chem.* 60, 6000–6001 (1995); P. Magnus, J. Booth, N. Magnus, J. Tarrant, S. Thom, F. Ujjainwalla. *Tetrahedron Lett.* 36, 5331–5334 (1995); H. K. Jacobs and A. S. Gopalan. *J. Org. Chem.* 59, 2014–2019 (1994).
- 11. (4R,8S,8aS)-3,8-dimethyl-4-(phenylsulfonyl)-2,4,6,7,8,8a-hexahydroazulen-5(1*H*)-one (8): colorless solid, mp 114–115 °C; [α]_D + 34.0° (c 0.99 CHCl₃); ¹H NMR (400 MHz, acetone- d_6) δ 7.93 (d, 2H), 7.72 (t, 1H), 7.63 (t, 2H), 5.17 (s, 1H), 3.18–3.08 (m, 1H), 2.70–2.60 (m, 1H), 2.40–2.10 (m, 4H), 2.02–1.80 (m, 2H), 1.70–1.55 (m, 2H), 1.46 (s, 3H), 0.84 (d, 3H, J = 7.0 Hz); ¹³C NMR (100 MHz, acetone- d_6) δ 206.78, 152.97, 145.08, 138.52, 133.58 (2x), 128.55, 80.15, 56.03, 44.10, 41.96, 38.83, 34.02, 31.35, 20.20, 18.79; IR (KBr) ν 2960, 2820, 1730, 1585, 1445, 1375, 1320, 1310, 1150, 1080 cm⁻¹; MS (Cl, CH₄) m/z 319 (M + H)⁺; anal. calculated for C₁₈H₂₂O₃S: C, 67.89; H, 6.96; S, 10.07; found: C, 67.64; H, 6.92; S, 10.07.
- 12. (4R,5R,8S,8aS)-3,8-dimethyl-4-(phenylsulfonyl)-1,2,4,5,6,7,8,8a-octahydroazulen-5-ol (**9**): colorless solid, mp 133–134 °C; $[\alpha]_D$ + 50.5° (c 1.0 CHCl₃); ¹H NMR (400 MHz, acetone- d_6) δ 7.86 (d, 2H), 7.66 (t, 1H), 7.55 (t, 2H), 4.45 (d, 1H, J = 4.5 Hz), 4.30 (m, 1H), 4.08 (d, 1H, J = 5.8 Hz), 2.75 (m, 1H), 2.30–2.15 (m, 1H), 2.15–1.82 (m, 4H), 1.70–1.55 (m, 2H), 1.58 (s, 3H), 1.40–1.25 (m, 1H), 1.22–1.10 (m, 1H), 0.77 (d, 3H, J = 7.1 Hz); ¹³C NMR (125 MHz acetone- d_6) δ 145.25, 142.10, 133.90, 130.13, 129.24, 128.48, 71.57, 70.69, 51.17, 38.12, 37.81, 31.02, 28.80, 28.69, 16.07, 15.39; IR (KBr) ν 3510, 2940, 2920, 1645, 1585, 1475, 1445, 1430, 1395, 1370, 1295, 1255, 1235, 1205, 1130, 1050 cm⁻¹; MS (Cl, CH₄) m/z 321 (M + H)⁺; anal. calculated for C₁₈H₂₄O₃S: C, 67.47; H, 7.55; S, 10.00; found: C, 67.26; H, 7.50; S, 9.73.
- 13. *Intramolecular* Julia condensations have also been reported for macrocyclizations: (a) K. Takeda, A. Nakajiama, E. Yoshii. *Synlett* 249–250 (1995) and earlier papers; (b) D. R. Williams, P. J. Coleman, C. R. Nevill, L. A. Robinson. *Tetrahedron Lett.* 34, 7895–7898 (1993); (c) D. R. Williams and P. J. Coleman. *Tetrahedron Lett.* 36, 35–38 (1995).
- 14. The aldehyde was prepared from **7** via DIBAL-H reduction; (4*S*)-4-{(1*S*)-3-methyl-2-[(phenyl-sulfonyl)methyl]cyclopent-2-en-1-yl}pentanal (**10**): colorless oil, $[\alpha]_D + 31^\circ$ (c 2.0 CHCl₃); 1H NMR (400 MHz, acetone- d_6) δ 9.70 (t, 1H, J = 1.4 Hz), 7.87 (d, 2H), 7.73 (t, 1H), 7.63 (t, 2H), 4.08 (d, 1H, J = 14.3 Hz), 3.92 (d, 1H, J = 14.3 Hz), 2.89 (m, 1H), 2.55–2.38 (m, 2H), 2.22–2.04 (m, 2H), 1.91–1.70 (m, 2H), 1.58–1.38 (m, 2H), 1.24 (s, 3H), 1.15–1.05 (m, 1H), 0.86 (d, 3H, J = 6.8 Hz); 13 C NMR (100 MHz, acetone- d_6) δ 202.99, 144.73, 140.40, 134.33, 129.91, 129.15, 125.92, 54.78, 53.56, 42.51, 37.75, 33.30, 29.40, 22.87, 18.25, 14.03; IR (neat) ν 2950, 1720, 1445, 1315, 1305, 1145, 1130, 1080 cm⁻¹; MS (Cl, CH₄) m/z 321 (M + H)⁺.