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Abstract: The benchmark dose (BMD) is the dose of a substance that is expected to result in
a prespecified level of effect, the benchmark response level or BMR. It is a general approach
to characterizing dose response, applicable to any toxicant and endpoint. A BMD is concep-
tually superior to a “no observed adverse effect level” (NOAEL) for this purpose because of
being less determined by experimental design, because it is a precisely defined entity, and be-
cause its precision can be estimated. Since a BMD is a single number, just as an NOAEL, it
is tempting to use the BMD as a straightforward replacement for the NOAEL in the assess-
ment process for calculating allowable daily intakes. However, the level of toxic response at
an NOAEL is unknown, while that at a BMD is well defined. Use of the BMD approach po-
tentially adds consistency and objectivity to the process of deriving reference values (RfDs,
RfCs, or ADIs) for setting regulatory levels. To take advantage of this, BMRs need to be se-
lected in a consistent way across studies and endpoints. This paper discusses some issues af-
fecting the selection of BMRs, and presents an example of a BMD calculated for the effects
of peripubertal exposure to the fungicide vinclozolin.

INTRODUCTION

The benchmark dose (BMD) was originally proposed in 1984 [1] as an alternative to the NOAEL (no
observed adverse effect level) and LOAEL (lowest observed adverse effect level) for setting regulatory
levels such as reference doses (RfDs), reference concentrations (RfCs), and acceptable daily intakes
(ADIs). The RfD, RfC, or ADI approach is used for agents whose dose-responses are thought to be very
nonlinear or threshold-like. In this methodology, the regulatory level is derived by first determining a
point of departure (POD) based on the dose response for the most sensitive endpoint(s) relevant to hu-
mans, then dividing it by a series of uncertainty factors (UFs) [2]. Typically, these uncertainty factors
include a factor for extrapolation from animal to human data (UF,), a factor to account for uncertainty
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about variability in the human population (UFyy), a factor for extrapolation from subchronic data to a
chronic exposure scenario (UFg), a factor for database deficiencies (UFp), and a modifying factor (MF).
Conventionally, NOAELs have been used as PODs, so when the lowest dose in the critical study is an
LOAEL, an additional uncertainty factor has been used (UF; ). The default value for these uncertainty
and modifying factors is 10, although an RfD or RfC with a total UF of >3000 is usually considered too
uncertain to be reliable. Factors of 1, 3, or 10 are usually applied for the UFs depending on the avail-
able data, and chemical-specific pharmacokinetic and/or pharmacodynamic data can be used to adjust
or replace these factors.

The BMD is used as an alternative to the NOAEL/LOAEL approach for a more quantitative way
of deriving regulatory levels for health effects assumed to have a nonlinear (threshold-like) low dose—re-
sponse relationship. Whereas NOAELs and LOAELSs are discrete doses from a study, the BMD ap-
proach involves modeling the dose—response curve in the range of the observable data, and then using
that model to interpolate an estimate of the dose that corresponds to a particular level of response, e.g.,
5 or 10 % for quantal data, or some predefined change in response from controls for continuous data.
A measure of uncertainty is also generally calculated, e.g., a confidence limit or Bayesian posterior [3],
and the lower confidence limit on the dose used as the BMD is called the BMDL. The BMDL accounts
for the uncertainty in the estimate of the dose response that is due to characteristics of the experimen-
tal design such as sample size. The BMDL is used as the basis for the point of departure (POD). In a
recent health assessment done by the EPA for 1,3-butadiene [4], an additional factor for extrapolating
from the BMDL to lower associated risk levels was applied (discussed further below).

Unlike NOAELs and LOAELs, BMDs are not constrained to be one of the experimental doses,
and can thus be a more consistent basis for dose—response assessment. NOAELs do not correspond to
a consistent response level and depend on sample size so that the NOAEL will be higher in studies with
a smaller sample size, the opposite of what is desirable. In addition, NOAELs are usually associated
with some definable level of risk, and are not threshold doses or “no effect levels”. The slope of the
dose—response curve is not usually considered in the NOAEL/LOAEL approach unless the slope is very
steep or very shallow. If an NOAEL has not been defined in a particular study and only an LOAEL is
available, an uncertainty factor is typically applied to account for the lack of an NOAEL (UF, ). The use
of BMDLs as the POD has been the basis for several RfDs and RfCs in the IRIS database [12]. EPA’s
Draft Benchmark Dose Technical Guidance Document [6] outlines a number of considerations to be
made in the derivation of BMDs and BMDLs.

The BMDL is also used as the basis for the POD for linear low-dose extrapolation, the dose—re-
sponse assessment approach applied to most carcinogens [5]. In this case, once the POD is determined,
risk is extrapolated linearly to a low dose corresponding to 107 to 1070 risk.

The BMD can also be used to estimate relative potencies among different chemicals. Usually, in
this case, the maximum likelihood estimate (BMD) rather than the lower confidence limit (BMDL) is
used for the comparison.

The BMD approach can be used for dose—response modeling of all types of chemical and physi-
cal agents and associated endpoints, including endocrine active substances (EASs), regardless of the as-
sumptions about low-dose linearity or nonlinearity. This is because dose-response modeling is done in
the observable range and the BMD is typically related to a response rate near the lower end of the ob-
servable dose range. Whether the effect seen with EASs is a nonlinear or threshold-type response or is
additive to background does not affect BMD calculation. Selection of the response level for deriving the
BMD, i.e., the benchmark response, BMR, is the more difficult issue, especially for continuous end-
points.
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ISSUES SURROUNDING SELECTION OF THE BMR
Type of data

Selection of the BMR depends on the kind of data being modeled, e.g., dichotomous (quantal) or con-
tinuous data. Other types of data are also encountered (e.g., categorical or graded responses), but are
not dealt with specifically here. Such data are often converted to quantal data before modeling.

The approach to BMD development has been discussed most often in the literature for quantal
data, primarily because a dichotomous response (i.e., whether a response is present or not) is somewhat
easier to judge (e.g., tumor, malformation). BMRs have been expressed in terms of extra or additional
risk, which are two ways of expressing the prevalence of adverse effects above background. EPA’s draft
BMD guidelines [6] recommend using extra risk as the more conservative approach. Thus, the BMD
associated with an extra risk at a BMR above background is the dose where the following expression is
true:

[P(d) - P(O))/[1 - P(O)] ey

where P(d) is the risk at a dose = d and P(0) is the background risk at zero dose.

For continuous data, the BMR is expressed as a change in the mean from control values. The se-
lection of the BMR is more difficult to determine for continuous data, because the goal is to base the
BMR on a change that is biologically meaningful. However, for many endpoints, this degree of change
has not been decided or agreed upon by relevant experts. The alternative, if no criteria have been de-
veloped for what degree of response is biologically meaningful, may be to use a change in mean re-
sponse equal to one standard deviation of the control mean. Continuous data can be modeled as such or
the data can be categorized (dichotomized) using the level of change considered meaningful or the 1 SD
change, and modeled in the same way as for quantal data.

Selecting the benchmark response level

Once the dose response is established, the only factor that affects the magnitude of the benchmark dose
is the selection of the BMR. How the BMR is selected can have a large effect on the way the resulting
BMD is used in a subsequent risk analysis. For example, it is tempting to think of using the BMD like
an NOAEL or LOAEL in a nonlinear risk assessment. With this interpretation, the BMD would be used
along with the typical uncertainty and modifying factors appropriate for NOAELs or LOAELSs. Several
studies in the literature (e.g., [7-11]) have compared various approaches to setting the BMR by trying
to ascertain the numerical relationship between BMDs calculated in different ways and NOAELSs.
However, this comparison was not meant to imply that BMDs should be direct substitutes for NOAELSs.
Rather, the comparison provided a reflection of the limit of detection and pointed out the differences in
response rate at the NOAEL for different types of effects.

It is arguable that the approach to risk assessment based on NOAFELs and LOAELs is weak be-
cause they are so strongly affected by the design of the bioassay from which they are generated. In ad-
dition, the level of effect actually present at the NOAEL and LOAEL is unknown and, therefore, they
may not be as health-protective as desired. By contrast, the more objective BMD approach provides an
opportunity to improve the consistency of risk assessments and their resulting health protectiveness.

One approach might be to select the BMR to reflect a constant level of toxicity, regardless of end-
point. This approach would certainly facilitate interpretation of the BMD, and would probably improve
the consistency of risk assessments. However, there are problems with this proposal: for example, com-
ing to common agreement on the amount of change in a continuous endpoint that is considered to be
adverse; and, to some extent, the difficulty of equating changes in continuous endpoints with changes
in the prevalence of discrete adverse effects. An alternative approach would be for experts to determine
the degree of change that is considered biologically meaningful and adverse for each endpoint, thus re-
moving the need to compare general levels of toxicity across endpoints. Taking the latter path would re-
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quire a fair amount of effort to develop a consensus among regulatory toxicologists about adversity of
responses for continuous data.

Given the difficulties that arise with the considered approaches to setting the BMR, it is tempting
to simply fix upon a fixed default level of response, say, for example, 10 % increase in the prevalence
of adverse effects, or a 1 SD change in the mean for continuous endpoints.

Use of BMDs in setting regulatory standards

Use of the BMD approach for nonlinear or threshold-type responses presents some challenges in terms
of risk communication. This is because the BMD is associated with a particular level of response risk
(5, 10 %), and the various uncertainty factors that are applied are not intended to reduce that risk, for
the most part. On the other hand, BMD modeling can aid in determination of risk above the RfD and
RfC values when exposures above those values occur.

Because UFs are applied multiplicatively they are acknowledged to overlap to some extent, so
that the application of several UFs probably does effect some risk reduction. However, the intent of
most of the UFs is not risk reduction. For example, the UF, and UFy; deal, respectively, with the as-
sumed differences in sensitivity between animals and humans, and the assumed variability in sensitiv-
ity among members of the human population. The UFg and UF, are intended to deal with various as-
pects of data deficiencies or limitations. Only the UF| used for the LOAEL to NOAEL extrapolation is
a true risk reduction factor. As indicated above, however, the NOAEL can be associated with a signifi-
cant level of risk in animal bioassay studies (e.g., 5-40 %), and the UF; may or may not adequately re-
duce the risk at the LOAEL to an acceptable level.

In a recent health assessment of 1,3-butadiene [4], a factor was applied to the BMDL for a quan-
tal response in an attempt to reduce the risk associated with the POD and also to account for the slope
at the BMD. This factor, which is a combination risk reduction factor and uncertainty factor, was termed
the effect level extrapolation factor (ELF), and was applied to the POD. The UFs were then applied to
this adjusted value. The ELF was determined as follows:

ELF = X X (slope from BMD  to 0)/(slope at the BMD,) 2)

where X is the % incidence at the BMR, and BMD, is the benchmark dose for x level of response. To
account for uncertainties about the level of risk at the POD and to insure adequate reduction, the mini-
mum factor applied is intended to be greater than 1 (usually a minimum of 3) up to X. The minimum
factor is determined by consideration of the level of response at X, the weight of the evidence, and the
endpoint(s) used to determine the POD. Thus, using this approach, RfDs and RfCs are more likely to
represent a negligible level of risk. Probabilistic approaches to determining the range of uncertainty
around the RfD and RfC may be useful in estimating the range of risk above the RfD or RfC when ex-
posures occur above those levels [14—16]. However, these approaches have not been adopted on a reg-
ular basis in risk assessment as yet.

High-dose effects

However the BMR is selected, it is important that the effects selected be relevant to the human situa-
tion. This is obvious when considering on which endpoints to base a risk assessment, but is just as im-
portant when considering the BMR for a particular endpoint. It is not uncommon for the dominant
mechanism of toxicity to change as the dose level increases. Unless the BMR is chosen in the range of
toxicity that is relevant to the human exposure range, the BMD that results will not be an appropriate
summary of the dose response.
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Consideration of model uncertainty

In the paper in which he introduced the idea of benchmark dose, Crump [1] specified that the BMR
should be selected to be in the range of the data. This minimizes the effect of model choice on the value
of the BMD. Formally, one can divide the uncertainty of a BMD estimate into that due to the data it-
self, and that due to the uncertainty about the “true” model. The farther a BMR is selected from the re-
sponses present in the data, the more the overall uncertainty about the BMD value is due to this latter
model uncertainty. Unfortunately, conventional statistical methods do not capture model uncertainty
when they quantify the uncertainty of a parameter estimate. Thus, it is important to select a BMR where
the model uncertainty contribution to the overall uncertainty is minimal.

EXAMPLE: PERIPUBERTAL EXPOSURE TO THE ANTIANDROGENIC FUNGICIDE
VINCLOZOLIN

The fungicide vinclozolin and its two metabolites M1 and M2 are androgen antagonists. They produce
adverse effects when administered during sexual differentiation in the fetus or around the time of pu-
berty, and alter sexual function in adult male rats. The study from which the data for this example were
taken [17] examined the effects of exposure to vinclozolin around puberty on the male reproductive
tract and serum hormone levels. In this example, benchmark doses were calculated for age at preputial
separation, epididymal weight, seminal vesicle weight, ventral prostate weight, and serum concentra-
tions of testosterone and luteinizing hormone. The data were provided by Dr. Gray as group means,
standard deviations, and sample sizes.

Computing a benchmark dose requires that: (i) a BMR be selected; (ii) one or several appropri-
ate dose—response models be fit to the data; (iii) one model be identified based on an assessment of the
quality of the model fit to the data; (iv) the best-fitting model be used to calculate the benchmark dose;
and (v) confidence limits or credible limits be computed for the estimate. Serum LH will be used to il-
lustrate these steps, which were followed for all six endpoints.

For this example, the BMD is the dose at which the mean of the response variable is expected to
change by an amount equal to the standard deviation of the control group. This level of change very
roughly corresponds to the increase in prevalence of extreme individual observations (that is, more ex-
treme than a few percent) by about 10 % [18]. The maximum likelihood fit of a linear, quadratic, power,
and Hill model [19], was determined for each endpoint using EPA’s BMDS software (see next section
for source). For each endpoint, two separate models for the within-dose-group variance were enter-
tained: (i) the variance is the same for all dose groups; and (ii) the variance for a dose group is propor-
tional to the mean raised to a power (e.g., if the estimate of the power is 2.0, the coefficient of variation
is constant). Thus, a total of eight models were fit to each of the six endpoints. The best-fitting model
of the set of eight, as determined by the sample size corrected version of the Akaike Information
Coefficient (AIC,) [20], was used to calculate the BMD and BMDL (Table 1).

For this example, we show some of the details of fitting the Hill model to the serum LH data.
Table 2 presents the original means and standard deviations as well as those predicted by the model, and
the scaled residuals: differences between observed and predicted means scaled by their predicted stan-
dard errors. These latter quantities are useful adjuncts for assessing model fit, since values with large
absolute values (say, greater than 2) indicate points that are not well described by the model. Graphical
evaluation is an essential element in assessing overall model adequacy: Figure 1 shows mean serum LH
with 95 % confidence intervals and the fitted curve. Both the figure and the tabulated scaled residuals
demonstrate that the model fits the data quite well, especially the data for the lowest dose. This con-
firms that the Hill model is a good choice for the LH data.

The BMDs and BMDLs for all six endpoints are graphed in Fig. 2. While the remaining endpoints
seem to form a cluster, with similar BMDs that overlap each other’s confidence limits, serum LH stands
apart with a substantially lower BMD.
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Table 1 AIC, values for the eight models considered for each of the six endpoints. The
minimum AIC_ value for each endpoint is underlined. For five endpoints, the power
parameter in the power model was estimated to be 1.0, so it and the linear models resulted
in the same BMD, BMDL, and AIC, values.

Endpoint

Model? Age at Epididymal = Serum  Seminal Serum Ventral

preputial weight LH vesicle  testosterone  prostate

separation weight weight
lin-hom 106.59 339.77 38.49 430.45 79.51 317.69
lin-het 108.45 341.64 18.96 432.62 71.36 319.08
quad-hom 108.97 341.05 40.64 432.92 81.94 320.16
quad-het 111.01 343.62 17.72 435.24 73.74 321.64
power-hom 106.59 339.77 38.49 430.45 79.51 317.69
power-het 111.08 341.58 18.96 432.45 71.36 321.69
Hill-hom 109.74 340.86 40.58 435.54 81.94 320.16
Hill-het 111.81 343.05 15.7 437.85 73.71 324.64

¥The word before the hyphen indicates the model for the mean (lin = linear, quad = quadratic, power =
power, Hill = Hill model); the word after the hyphen indicates the variance model, either constant
(homogeneous) or modeled as a power of the mean (heterogeneous).

Table 2 Mean serum LH concentrations (ng/ml) with their standard
deviations and sample sizes, along with the values predicted by the fitted
model and differences between the observed and expected mean LH levels
scaled by the predicted standard error (“scaled residuals”™).

Mean SD Scaled
Dose N  Observed Expected Observed Expected Residuals
0 10 0.62 0.61 0.23 0.23 0.017
10 10 1.10 1.07 0.67 0.54 0.055
30 10 1.33 1.54 0.73 0.93 —-0.234
100 10 2.30 2.06 1.59 1.45 0.163

Hill Model with 0.95 Confidence Level

2.5 -

1.5

Mean Response
N

05 4

BMDL BMD . . ‘ ‘

0 20 40 60 80 100
dose

Fig. 1 Mean serum LH and 95 % confidence limits from [17]. The solid line is the fitted dose-response curve.
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Fig. 2 BMDs and lower 95 % confidence limits for all six endpoints, based on the best-fitting model (determined
by lowest AIC, value) for each endpoint.

MODELING SOFTWARE FOR CALCULATING BENCHMARK DOSES

Many computer software packages allow nonlinear modeling of datasets, but most of these prove to be
inadequate for benchmark dose modeling because they cannot calculate benchmark doses or their con-
fidence limits. Currently (as of 1 October 2003), two packages have been created specifically for mod-
eling toxicology data and calculating benchmark doses and their confidence limits:

BMDS: available for free download from the U.S. Environmental Protection Agency
(<http://www.epa.gov/ncea>).

ToxTools: commercial software available from Cytel Software Corporation, Cambridge, MA
(<http://www.cytel.com>).

In addition, BMD analysis can be carried out using general-purpose statistical software if it is
flexible enough to allow the programming for calculation of the BMD and BMDL. This has the advan-
tage that the analysis can be tailored to specific experimental designs and that there are no restrictions
on the models that can be used. However, this approach requires substantially more statistical and pro-
gramming skill than does using the special-purpose software.

RESEARCH PRIORITIES

There is much need for further research on the benchmark dose approach both in statistical methodol-
ogy and in application to risk assessment. Methodologies need to be developed and applied to toxicol-
ogy data for quantifying model uncertainty, which could allow extrapolation of the dose response to
lower doses while tracking the uncertainty of doing so. Since health effects risk assessments are gener-
ally based on a review of effects on multiple endpoints based on multiple data sets, methods need to be
developed for better modeling of multiple endpoints at a time, and for combining estimates across in-
dependent data sets.

On the applications side, more thought needs to be applied to the problem of extrapolating the
BMD, usually derived from animal toxicology studies, to a safe human or ecological exposure level, es-
pecially for nonlinear effects.

© 2003 IUPAC, Pure and Applied Chemistry 75, 2151-2158



2158 R. WOODROW SETZER, JR. AND C. A. KIMMEL
REFERENCES

1. K. S. Crump. Fundam. Appl. Toxicol. 4, 854-871 (1984).

2. D. G. Barnes and M. Dourson. Regul. Toxicol. Pharmacol. 8, 471-486 (1988).

3. V. Hasselblad and A. M. Jarabek. In Bayesian Biostatistics, D. A. Berry and D. K. Stangl (Eds.),
Marcel Dekker, New York (1995).

4. U.S. Environmental Protection Agency. National Center for Environmental Assessment-
Washington Office, Office of Research and Development, U.S. Environmental Protection Agency,
Washington, DC. EPA/600/P-98/001F, May (2002).

5. U.S. Environmental Protection Agency. National Center for Environmental Assessment, Office of
Research and Development, U.S. Environmental Protection Agency, Washington, DC. NCEA-F-
0644, July (1999). Available at <http://www.epa.gov/ncea/raf/cancer.htm>.

6. U.S. Environmental Protection Agency. National Center for Environmental Assessment, Office of
Research and Development, U.S. Environmental Protection Agency, Washington, DC.
EPA/630/R-00/001, October (2000). Available at <http://cfpub.epa.gov/ncea/>.

7. E. M. Faustman, B. C. Allen, R. J. Kavlock, C. A. Kimmel. Fundam. Appl. Toxicol. 23, 478-486
(1994).

8. B.C. Allen, R. J. Kavlock, C. A. Kimmel, E. M. Faustman. Fundam. Appl. Toxicol. 23, 487-495
(1994).

9. B.C. Allen, R. J. Kavlock, C. A. Kimmel, E. M. Faustman. Fundam. Appl. Toxicol. 23, 496-509
(1994).

10. R.J. Kavlock, B. C. Allen, C. A. Kimmel, E. M. Faustman Fundam. Appl. Toxicol. 26, 211-222
(1995).

11. J. R. Fowles, G. V. Alexeeff, D. Dodge. Regul. Toxicol. Pharm. 29, 262-278 (1999).

12. U.S. Environmental Protection Agency. (2002). Online at <http://www.epa.gov/iris/index.html>.

13. U.S. Environmental Protection Agency. Vol. 1, EPA/600/R-99/001 (1997), and Vol. 2, EPA/600/
R-98/155 (1998). Available at <http://www.epa.gov/nceawww 1/colloquium.htm>.

14. S.J. S. Baird, J. T. Cohen, J. D. Graham, A. I. Shlyakhter, J. S. Evans. Human Ecol. Risk Assess.
2, 79-102 (1996).

15. J. S. Evans, L. R. Rhomberg, P. L. Williams, A. M. Wilson, S. J. Baird. Risk Anal. 21, 697-717
(2001).

16. J. C. Swartout, P. S. Price, M. L. Dourson, H. L. Carlson-Lynch, R. E. Keenan. Risk Anal. 18,
271-82 (1998).

17. E. Monosson, W. R. Kelce, C. Lambright, J. Ostby, L. E. Gray, Jr. Toxicol. Ind. Health 15, 65-79
(1999).

18. K. S. Crump. Risk Anal. 15, 79-89 (1995).

19. U.S. Environmental Protection Agency. EPA/600/%-00/014F (2001).

20. K. P. Burnham and D. R. Anderson. Model Selection and Inference, p. 51, Springer Verlag, New

York (1998).

© 2003 IUPAC, Pure and Applied Chemistry 75, 2151-2158



