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Abstract: The cyclization of various β-amino acids with PhP(O)Cl2 affords cyclo-β-di-
peptides, whose boat conformation is probably responsible for the high diastereoselectivity
observed in the alkylation reactions of their lithium enolate derivatives.
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INTRODUCTION

Although less abundant in Nature than their α-analogs, several β-amino acids exhibit interesting
pharmacological activity on their own, or can be found in important natural products. Furthermore,
these compounds can serve as building blocks in peptide chemistry; indeed, the structure and confor-
mation of α-peptides tend to be unique [1]. A number of derivatives of β-amino acids are currently
being tested in clinical studies owing to their potential in medicinal chemistry [2].

As a consequence of the above, the synthesis of enantiopure β-amino acids has emerged as an im-
portant and challenging synthetic endeavor. Indeed, whereas only 5 pertinent literature entries on this
subject appear registered prior to 1980, and 11 for the period 1980–1990, more than 500 reports have
appeared during 1991–2004 [3]. The present report summarizes our recent work in the area of enantio-
selective synthesis of α-substituted β-amino acids, as disclosed in the 15th International Conference on
Organic Synthesis on 5 August 2004.

1-BENZOYL-2-(S)-TERT-BUTYL-3-METHYLPERHYDROPYRIMIDIN-4-ONE

Among the various methods available for the preparation of enantioenriched α-amino acids, those em-
ploying chiral glycine derivatives have been particularly successful. Scheme 1 illustrates the conversion
of glycine, an achiral α-amino acid, into 1,3-imidazolidin-4-one 1—a chiral derivative. Treatment with
lithium diisopropylamide (LDA) generates the corresponding enolate, whose diastereotopic faces are
differentiated by an approaching electrophile. In particular, steric hindrance by the bulky tert-butyl
group leads to highly diastereoselective trans-electrophilic addition, and hydrolysis to the formation of
enantiopure α-substituted α-amino acids [4].
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It can be appreciated in Scheme 1 that diastereoselectivity in the alkylation step (1 → trans-2) is
the result of 1,3-stereoinduction [5]. Thus, extension of the methodology to the chiral pyrimidinone 3
derived from β-alanine may not be as efficient a process, owing to the fact that 1,4-stereoinduction in
this case could be anticipated to be lower (Scheme 2).

Luckily, and as a consequence of allylic A1,3 strain in heterocycle 3, the bulky tert-butyl group
adopts an axial orientation in the six-membered ring, and in this conformation the corresponding eno-
late reacts with alkyl halides to give the trans-products 4 with high diastereoselectivity and good yields
[6].

Hydrolysis of the alkylated pyrimidinones (2S,5R)-4 was achieved by acid hydrolysis (6 N HCl,
90–100 °C) followed by purification on an ion-exchange column, to afford α-alkylated β-amino acids
of (R) configuration (eq. 1) [6].

A convenient protocol for the preparation of the enantiomeric α-alkylated β-amino acids of
(S)-configuration involves epimerization of trans-(2S,5R)-4 derivatives into the cis-(2S,5S)-4 diastereo-
mers, followed by hydrolysis (Scheme 3) [6].
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Scheme 1 Use of chiral glycine enolates for the preparation of enantiomerically pure α-substituted β-amino acids
[4].

Scheme 2 Is chiral pyrimidinone 3 useful for the enantioselective preparation of α-substituted β-amino acids?

(1)



Pyrimidinone (S)-3 is also a useful starting material for the preparation of α,α-disubstituted
β-amino acids [7]. Recently, owing to the high price of pivalaldehyde, we have substituted this alde-
hyde with isobutyraldehyde in the synthesis of pyrimidinone (R)-6, which proved to be a convenient
substrate for the enantioselective synthesis of α-substituted α,β-diaminopropionic acids (Scheme 4) [8].

SYNTHESIS OF CYCLO-�-DIPEPTIDES FROM �-AMINO ACIDS

The cyclization of β-amino acids by means of activating agents is one of the most useful approaches for
the construction of β-lactams; however, we found that when PhP(O)Cl2 (in Et3N) is employed as the
activating agent, reaction of the derived “active ester” affords varying amounts of cyclo-β-dipeptides,
depending on reaction conditions (solvent, temperature, and concentration), as well as on the substitu-
tion pattern in the starting β-amino acid (Scheme 5) [9]. Although ordinary 1H and 13C NMR spectra,
and even EI (70 eV) mass spectra may be unsuitable for distinction between β-lactams 7 and cyclo-
β-dipeptides 8, characteristic infrared bands allow easy differentiation [10]. In particular, whereas
β-lactams 7 present carbonyl stretch absorptions around 1730–1750 cm–1, cyclo-β-dipeptides 8 exhibit
C=O values close to 1640 cm–1 (Scheme 5).
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Scheme 3 Epimerization of trans-disubstituted pyrimidinones (2S,5R)-4 into cis-diastereoisomers (2S,5S)-4 in the
preparation of α-alkylated β-amino acids (S)-5 [6].

Scheme 4 Enantioselective synthesis of α-substituted α,β-diaminopropionic acids [8].



DIASTEREOSELECTIVITY OF THE DOUBLE ALKYLATION OF
CYCLO-(N-BENZYL-�-ALANINE-N-BENZYL-�-ALANINE)

The double alkylation of cyclo-β-dipeptide 8a (R = H) was achieved by treatment with 2 equiv of LDA
in THF and at –78 °C, followed by the addition of 2 equiv of the electrophile. As summarized in
Table 1, the diastereoselectivity of the reaction was excellent, and a single diastereomeric product is ob-
served in most cases (Table 1).

Table 1 Diastereoselectivity of dienolate 8a-Li2 alkylations.

Product RX Yield (%) ds (%) υC=O (cm–1)

8b CH3I 75 >98a 1638
8c PhCH2Br 63 >98a 1642
8d CH2=CH–CH2Br 60 98 1634
8e CH3CH2I 23 >98a 1634

aA single diastereomeric product is observed by 1H NMR spectroscopy.

Suitable crystals of dialkylated derivatives 8b–8d were obtained by recrystallization, and X-ray
crystallographic analysis provided the solid-state conformations and structures presented in Fig. 1. It is
appreciated that the relative configuration in these compounds is like (R,R or S,S) [11], in slightly dis-
torted boat conformations where the substituents occupy pseudoequatorial orientations (Fig. 1).
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Scheme 5 Synthesis of cyclo-β-dipeptides from β-amino acids [9].



The nearly exclusive formation of the cis (like) diastereomeric products 8b–e may be interpreted
as a consequence of the boat conformation of dienolate 8a-Li2, where the approach of the electrophile
is restricted to the outer faces owing to steric hindrance encountered upon approach to the inner faces
(Fig. 2).

DIASTEREOSELECTIVE ALKYLATION OF
(±)-CYCLO-(N-BENZYL-�-ALANINE-N-BENZYL-�2-HOMOPHENYLALANINE)

An interesting question is whether products 8b–e are the result of highly diastereoselective alkylation
of monosubstituted intermediates 9; that is, it is possible that 1,5-stereoinduction is highly effective in
alkylation reactions of eight-membered cyclo-β-dipeptides 9 (eq. 2).

In the event, alkylation of benzylated cyclo-β-dipeptide (±)-9 (R = PhCH2) both in the absence or
presence of salt (LiCl) or cosolvent (HMPA) additives proceeded with good to excellent diastereo-
selectivity. Best results are observed in the methylation reaction of (±)-9 in the presence of 6 equiv of
LiCl (entry 2 in Table 2), and in the benzylation reaction of the same substrate in the presence of 6 equiv
of HMPA cosolvent (entry 4 in Table 2).
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Fig. 1 Molecular structure and solid-state conformation of cyclo-β-dipeptides 8b and 8c.

Fig. 2 Suggested boat conformation in dienolate 8a-Li2, where electrophilic approach on the outer faces leads to
formation of the cis (like) dialkylated products (racemic).

(2)



Table 2 Diastereoselective alkylation of racemic
cyclo-(N-benzyl-β-alanine-N-benzyl-β2-homophenylalanine) (±)-9.

Entry RX Additive Equiv. Yield (%) dr (l:u)

1 CH3I — — 70 4:1
2 CH3I LiCl 6 55 9:1
3 PhCH2Br — — 39 >49:1
4 PhCH2Br HMPA 6 50 >49:1

Molecular modeling (PM3) of enolate intermediate 9-Li indicates that steric hindrance prevents
addition of the electrophile on the Si face of the enolate (Fig. 3). As inferred from this analysis, addi-
tion of the eletrophile to the Re face of enolate 9-Li should afford the cis (like) dialkylated product, as
experimentally observed.

DIASTEREOSELECTIVE ALKYLATION OF ENANTIOPURE
(S)-CYCLO-(N-BENZYL-�-ALANINE-N-BENZYL-�2-HOMOPHENYLALANINE)

As anticipated, the alkylation of enantiomerically pure cyclo-β-dipeptide (S)-9 proceeded with similar
diastereoselectivity to give enantiopure dialkylated derivatives of like relative configuration, whose acid
hydrolysis should provide enantiopure α-substituted β-amino acids (Scheme 6).
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Fig. 3 Lowest energy conformation of enolate 9-Li showing the preferential approach of an electrophile on the Re
face (PM3 level).

Scheme 6 Diastereoselective alkylation of (S)-9 en route to enantiopure α-substituted β-amino acids.
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