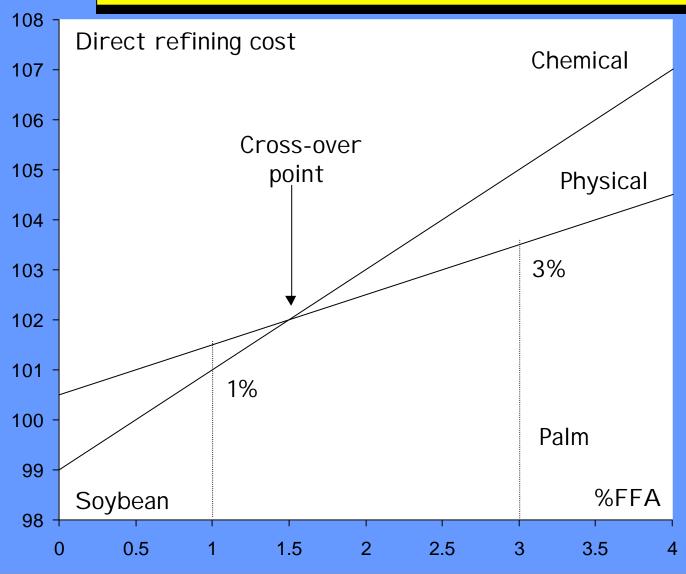

IUPAC-AOCS Workshop on Fats, Oils & Oilseeds Analyses & Production December 6-8, 2004 Tunis, Tunesia

DEODORIZATION AND PHYSICAL REFINING


Wim De Greyt
De Smet Group Belgium

Physical versus chemical refining

Deodorization conditions

Typical deodorization conditions

	Chemical Refining		Physical
Conditions	U.S.	Europe	Europe
Temperature (°C) Pressure (mbar)	250-260 3-4	230-240 2-3	230-250 2
Sparge steam (%)	0.5-2.0	0.5-1.0	1-2
Time (min.)	20-40	40-60	60-90
Final FFA (%)	4	- 0.03-0.05	>

Deodorization principle

Stripping

FFA, volatile odoriferous components,

Valuable minor components (tocopherols, sterols,)

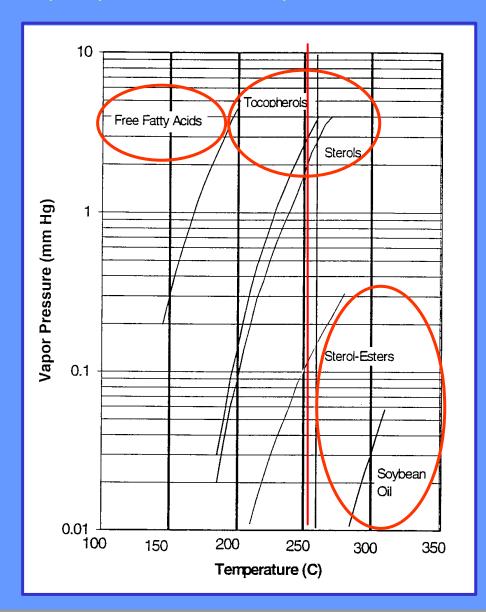
Contaminants (pesticides, light PAH, PCB, dioxins,...)

Odor and taste removal (actual Deodorization)

Hydrolytic/thermolytic degradation : f (steam/ time)

Temperature effect

Heat bleaching, *cis-trans* isomerisation, Polymerisation, interesterification,



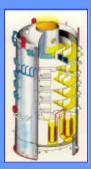
Distillation-Determining Factors

- VOLATILITY of the components
 - Vapour pressure (at a given temperature)
 - General:heavier components are less volatile
 - FFA > Tocopherols > Sterols
- CONCENTRATION of the components
 - Partial pressure
 - Depends on vapour pressure and concentration

Vapor pressure - temperature relationship for different components in oils

— 260°C

Component	Mol. Weight	Relat. volatility
Fatty acid	280	2.5
Squalene	411	5
Tocopherol	415	
Sterol	410	0.6
Sterol ester	675	0.04
Oil	885	<small></small>


Stripping agent

- Total pressure gas phase = S partial pressures
 - S partial pressures is low (mainly triglycerides)
- Distillation will only occur if :
 - S partial pressures > applied system pressure

Necessary to add stripping agent (steam, nitrogen)

Stripping agent

Required amount of stripping agent

- directly proportional to its molecular weight
- low molecular weight is required (steam/nitrogen)

Nitrogen

- inert and non-condensable gas
- lower losses (no hydrolysis) and higher distillate quality
- more powerful vacuum system required
- profitability is very uncertain

Steam

- most 'evident' choice

Distillation

Simplified 'Bailey' Equation (initial FFA low)

$$S = \frac{P_t}{E.p_i^0}.In \frac{V_a}{V_0}$$

S = Total Moles of steam

P_t = Total deodorization pressure

p_i° = Vapour pressure of a given volatile component

V_a = Initial molar concentration of the component

 V_0 = Final molar concentration of the component

E = Vaporization efficiency

Stripping

$$S = \frac{P_t}{E.p_i^0}.ln\frac{V_a}{V_0}$$

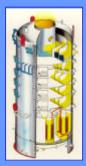
- Impossible to eliminate all volatile components $(V_0 = 0 \text{ would require an infinite amount of steam})$
- Halving the concentration of a given volatile requires same amount of steam irrespective of its absolute level

Refined Oil Quality

- Deodorization is a crucial refining stage
- Deodorizer design and process conditions have a determining effect on the refined oil quality
- Control of 'unwanted' and 'desired' effects:
 - trans fatty acid formation
 - positional isomerisation of PUFA
 - polymerisation (dimers)
 - controlled stripping of tocopherols, sterols
 - complete stripping of contaminants

unwanted

desired

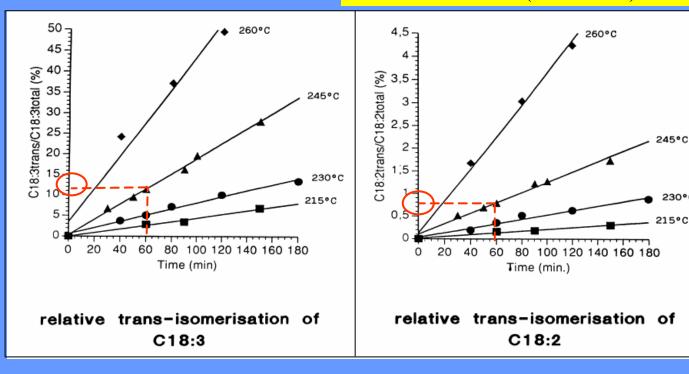


Trans Fatty Acids

- Unsaturated fatty acids with one or more double bond in trans configuration
- Structure similar to saturated fatty acids
 - Higher melting point than cis isomers
 - Negative nutritional properties : unwanted in food fats
- Renewed interest because of stricter legislation
 - trans labelling in USA from 2006
 - very strict Danish regulation: max. 2% in food fats
 - Canada considers to adopt same regulation

Trans Fatty Acids

- Mainly formed during partial hydrogenation
 - depending on hydrogenation process conditions
 - typical levels: 10-50% (high in Cocoa Butter Replacers)
- Trans formation during bleaching
 - 0.1-0.2% trans formation with acid activated BE
- Deodorisation
 - % trans = f (time, temperature)
 - T > 220°C detectable; T > 250°C exponential
 - No significant influence of sparge steam and pressure



Trans Fatty Acids

Degree of isomerization (DI)

 $DI_{18:x} = \frac{C18 : xtrans}{C18 : x(cis + trans)} \cdot 100$

General rule: TFA= 10% of C18:3 + 1% of C18:2

For C18:3 rich oils: max. TFA = 1%; for other oils: max. TFA = 0.5%

Tocopherols

Losses during bleaching

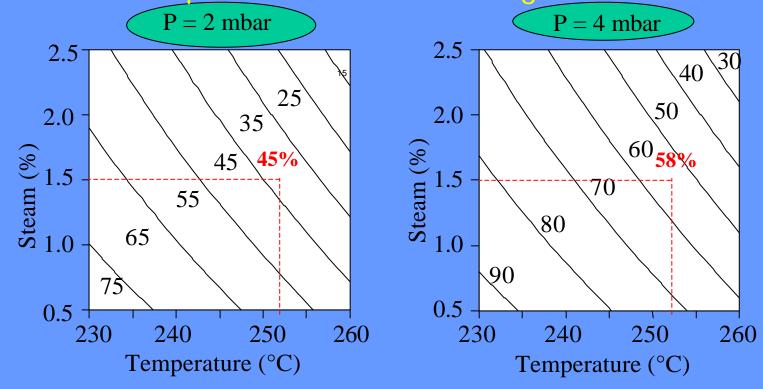
- Limited degradation (5-10%)
- Affected mostly by type and amount of BE

Losses deodorisation/deacidification

- Higher 'losses' possible (15.....> 60%)
- Tocopherol removal = f (steam, temp., pressure)

Distillation

Thermal breakdown


Oxidation

Controlled tocopherol stripping

Relative tocopherol retention during deodorization

Higher retention/more stripping at higher P, lower T and less steam

Contaminant removal

- Adsorption on specific adsorbens (activated carbon)
 - Heavy polycyclic aromatic hydrocarbons
 - Dioxins and furans from Fish Oils
 - PCB (only partially, less efficient than dioxins)

- Deodorization (only 'volatile' contaminants)
 - Pesticides (organo-chlorine)
 - Light polycyclic aromatic hydrocarbons (coconut oil)
 - PCB, dioxins, brominated flame retardants (fish oil)

Pesticides

- Today
 - * Contamination usually below limit of detection (20-50 ppb)
 - * Occasionally: 1-2 ppm (improper post-harvest treatment)
- Efficient removal during deodorization if

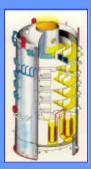
T >230°C, p< 4 mbar and steam > 1%

Distillation

Thermal decomposition

Pesticides can be removed efficiently during deodorization

 Monitoring at regular intervals remains necessary (especially for mild refined oils)


PAH Removal during Refining

- Heavy PAH
 - * Adsorption on activated carbon
 - * 0.1-0.4% added together with bleaching earth or separately
- Light PAH
 - * Stripped under conventionally applied deodorizer conditions

T > 220°C, p < 4 mbar and steam > 1%

Levels > 25 ppb can still be detected in refined oils in case of highly contaminated crude oils

Deodorization Technology

Process stages

Oil deaeration Prevention oxidation

Heating ———— Heat recovery

Final heating

Injection of stripping steam

Low pressure (vacuum)

Condensation of volatiles

- Cooling Heat recovery final cooling

- Polish filtration + AO dosing

Heating

Two stage process

- preheating followed by final heating

Preheating

- heat recovery step
- oil/oil heat exchanger (incoming oil/finished oil)

Final heating

- High pressure steam (most used & recommended today).
- Thermal oil (avoided for food safety reasons)
- Electrical heating (rarely used)

Heating

Temperature of high pressure steam

Pressure	Steam temperatu	re Latent heat	Specific volume
(bar)	(°C)	(kJ/kg)	(m³/kg)
1	99.6	2258	1,694
2	120.2	2202	0,8853
3	133.5	2163	0,6056
5	151.8	2108	0,3747
7	164.9	2065	0,2762
10	179.9	2014	0,1943
15	198.3	1945	0,1316
20	212.4	1889	0,09952
30	233.8	1794	0,06663
40	250,3	1713	0,04975
50	263.9	1640	0,03943

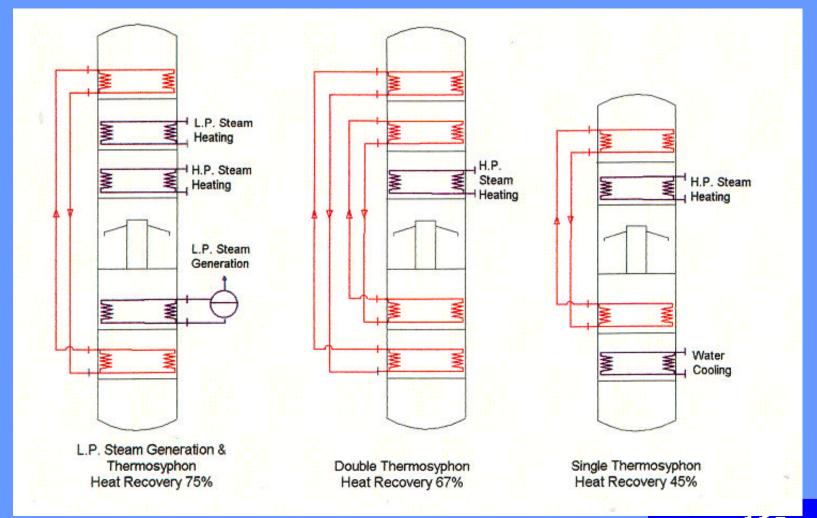
Heat recovery

External heat exchanger

spiral

oil-steam heat exchanger

Internal heat exchangers

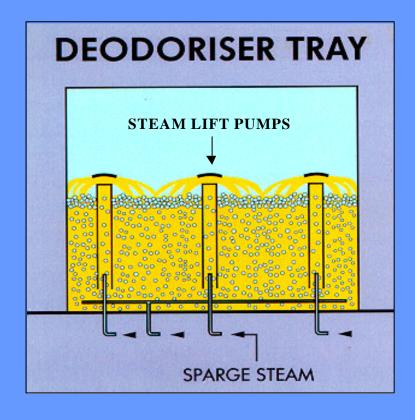

oil-oil heat exchanger

Heat recovery: Thermosyphon

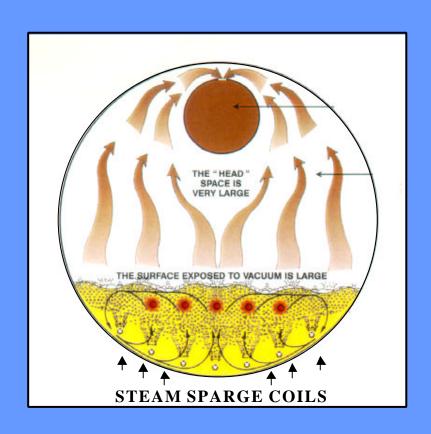
Vaporization efficiency

Steam distribution

- sparge coils with very fine holes ($\emptyset = 0.5-2.5$ mm)
- steam lift pumps


Deodorizer design

- Deep bed deodorizer (steam lift pumps)
- Shallow bed deodorizer (sparge coils)
- Continuous refreshing of the oil at vapor-liquid contact zone (lowest pressure)



Deodorizer design

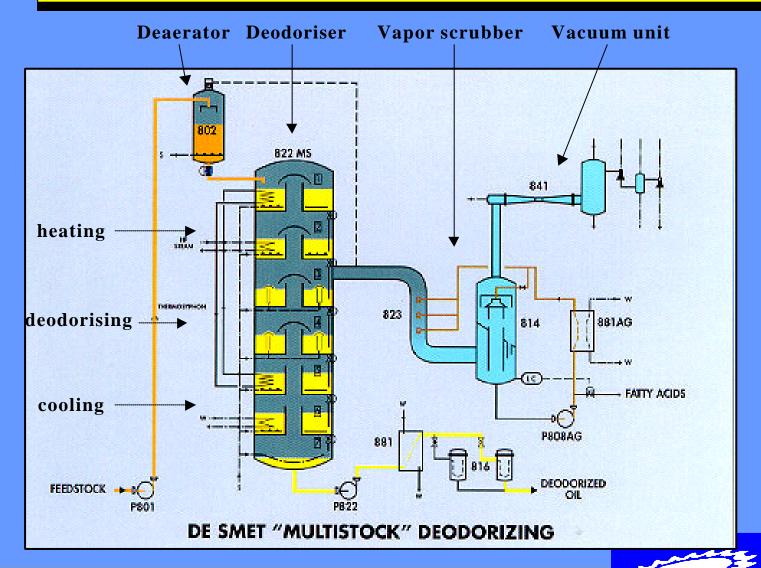
Deep bed deodoriser

Shallow bed deodoriser

Vapor scrubbing system

Composition of vapor phase

- Volatile components (FFA, odor components)
- Stripping steam
- Non condensable gases (air,...)


Condensation of volatile components

- intimate contact between vapor and recirculating distillate
- series of sprayers or packed bed in vacuum duct
- Distillate is recirculating at the lowest possible temp.
- Installation of demister at the top
- Designed to have a minimal pressure drop

Vapor scrubbing system

Deodorizer distillates

Composition of industrial deodorizer distillates

	Soybo	ean	Corn	Sunflowe	er
Component	chemical	physical	physical	chemical	physical
Squalene (%)	1-2	0.5	0.5-1.0	0.5	0.5
Tocopherols (%)	16-20	5-7	2-4	5-7	1-2
Sterols (%)	19-23	11	3-6	12-14	4-5
Triglycerides (%)	5-6	4	1-2	2-3	1-2
FFA (%)	33	75	77-81	39	70

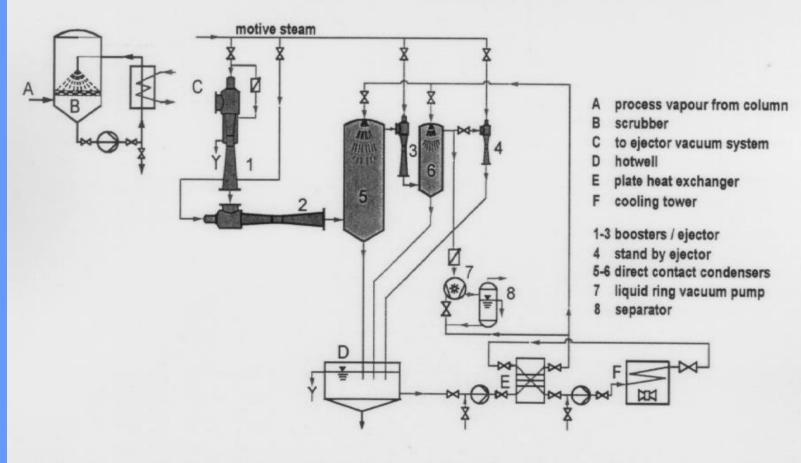
Concentration of contaminants (pesticides, PAH)

Vacuum systems

Conventional vacuum system

- Combination of steam jet ejectors (boosters), vapor condensers and mechanical (liquid-ring) vacuum pump
- High motive steam consumption (60-85% of total steam)

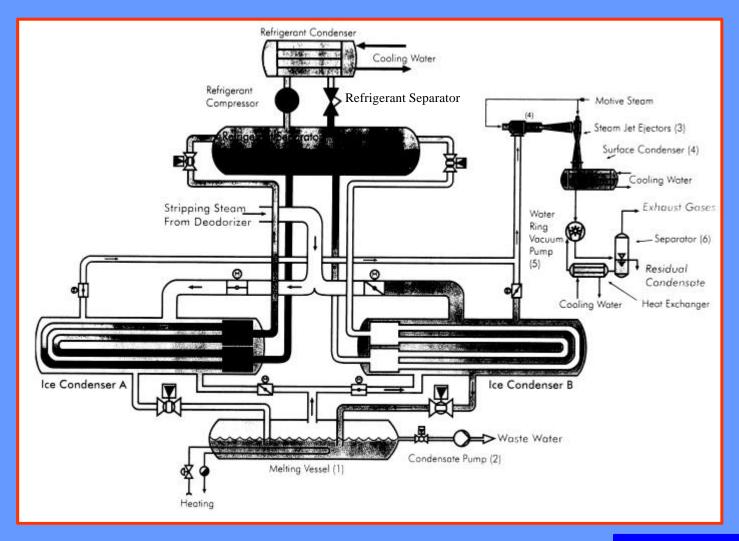
Pre	ssure	kg motive steam p	er kg strippng steam
Booster	Deodorizer	30°C (1)	10°C (2)
2.5	3 mbar	4.5	1.6
1.5	2 mbar	6.2	2.5


Note:

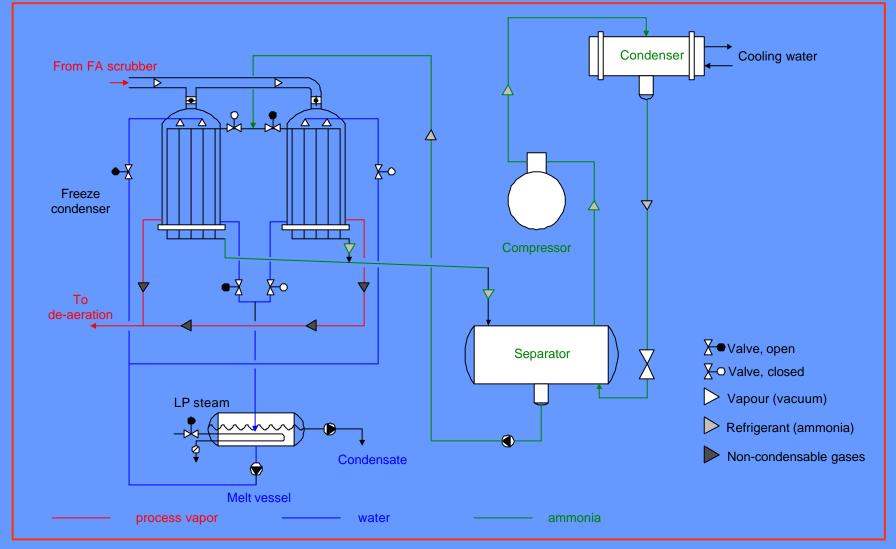
- (1) Barometric condenser water inlet temperature: 24°C; outlet temperature: 30°C
- (2) Barometric condenser water inlet temperature: 5°C; outlet temperature: 10°C;

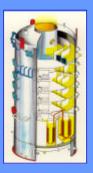
Vacuum systems

Dry condensing – I ce condensing


- Sublimation of steam (Into Ice) on surface condensers
- Low pressure can be reached (< 2 mbar in deodorizer)
- Strongly reduced odor emission
- Nearly no motive steam but higher electricity consumption
- Higher investment cost (compared to boosters)
- Operating cost (and ROI) will depend on ratio between cost of steam and electricity

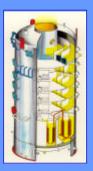
Generally shorter RO1 in Europe


Dry condensing vacuum system with horizontal condensers



Dry Condensation Systems with vertical condensers

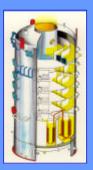
Deodorizer design


Batch deodorization

Continuous deodorization

- Horizontal deodorizer
- Single vessel vertical deodorizer
- Packed column technology

Semi-continuous deodorization

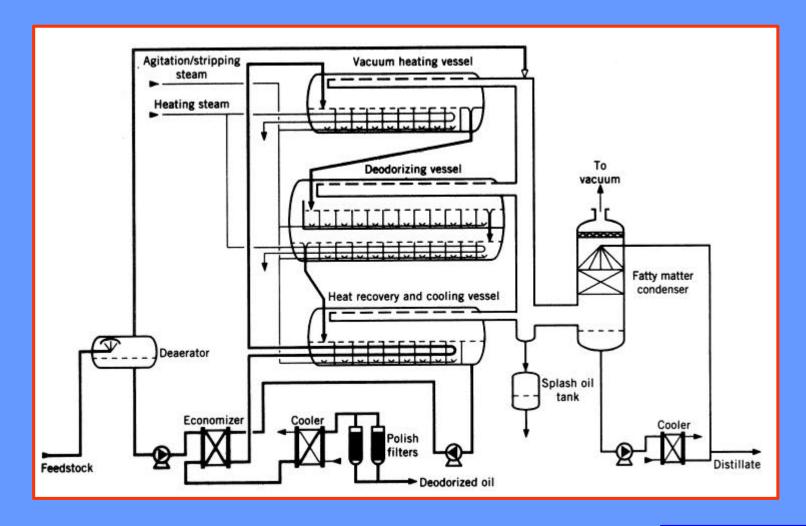

Continuous Deodorization

Limited feedstock changes

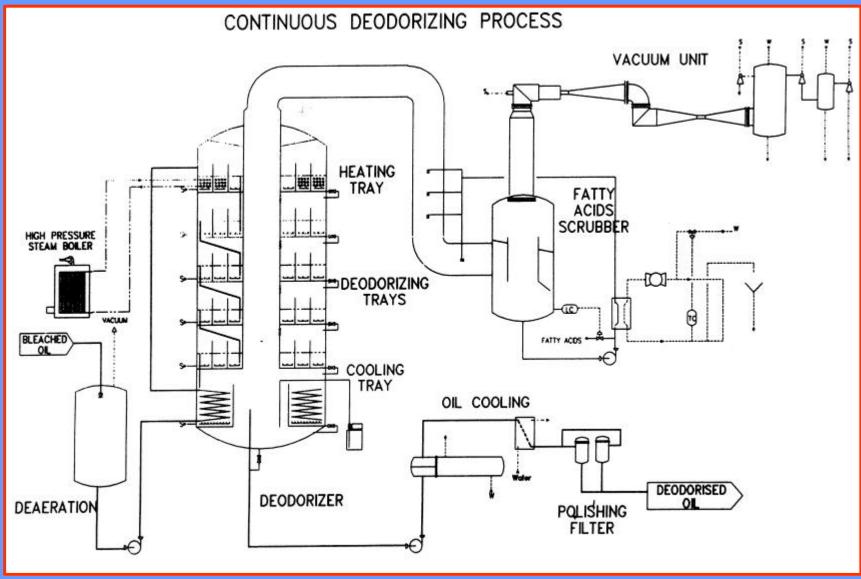
- Advantages -> Low utilities cost (high heat recovery)
 - → Short residence time
 - → Excellent control of all parameters

Disadvantage -> Contamination during feedstock change

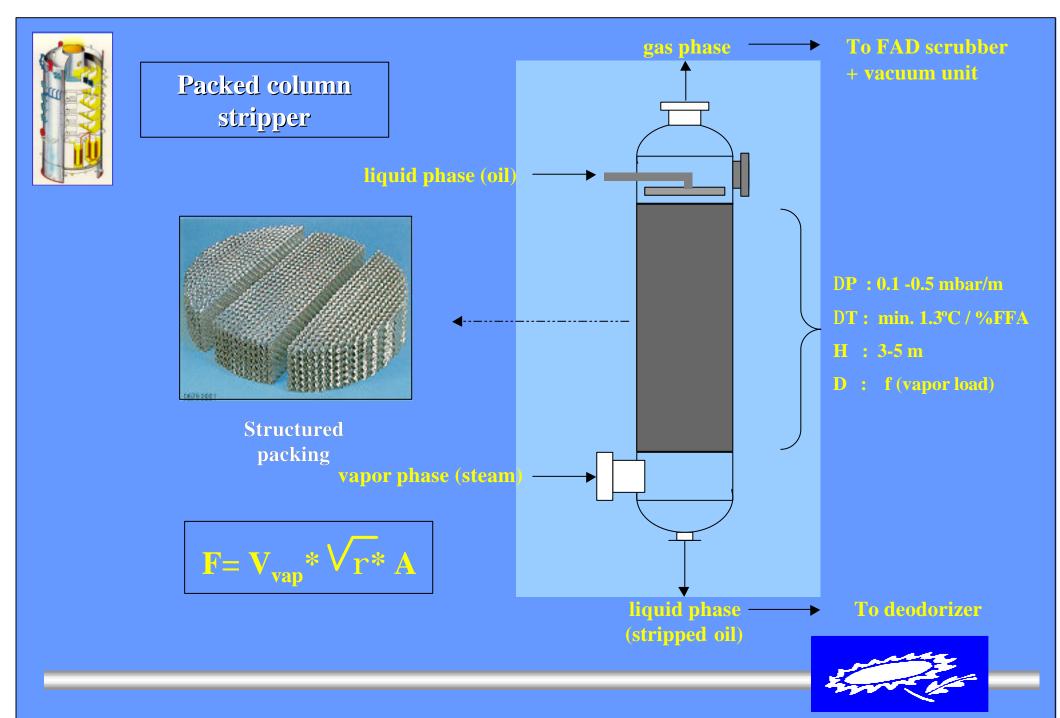
Continuous Deodorization

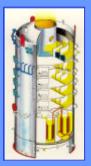

Continuous deodorizer types

- Horizontal multi-vessel deodorizer
- -Vertical deodorizer → most common
 - → all operations integrated in single vessel.
- Thin film deodorizer → packed column
 - + retention vessel



Continuous horizontal multi-vessel deodoriser





PACKED COLUMN TECHNOLOGY

Specific Process conditions

- Structured packing : 100 - 300 m²/m³

- Efficient stripping : Counter-current contact oil/steam

- Short residence time : Few minutes at high temperature

Applications

- Stripping of valuable minor components or contaminants from heat sensitive oils
- Preferably only in continuous operation
- No deodoriser (too short residence time)

Future challenges in deodorization

Lower 'heat load'

- Low trans and polymer formation
- No positional isomerisation of PUFA
- Preservation of natural character (color, aroma,...)

combined with

Efficient and controlled stripping

- Controlled stripping of tocopherols and sterols
- Complete removal of contaminants

Improved Deodorization Technology

- Dual temperature deodorization
 - Deodorization at two different temperatures
- Integration of packed columns
 - for specific application only
 - efficient stripping lower steam consumption
- Dual condensation
 - Condensation at two different temperatures
 - Higher added value of deodorizer distillate (physical refining)
- Dry-I ce condensing
 - Lower deodorizing pressure (1 mbar)
 - Allows milder refining (lower temp)

